US009135226B2

a2 United States Patent

Sulistio et al.

US 9,135,226 B2
*Sep. 15, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

METHOD AND APPARATUS FOR
DECLARATIVE UPDATING OF
SELF-DESCRIBING, STRUCTURED
DOCUMENTS

Inventors: Muljadi Sulistio, Fremont, CA (US);
Yang Wei, Hayward, CA (US); Kelly
Lane Schwarzhoff, Napa, CA (US);
Yuan Ding, Fremont, CA (US)

Assignee: OPEN INVENTION NETWORK,

LLC, Pleasanton, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 583 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/460,399

Filed: Apr. 30, 2012

Prior Publication Data

US 2012/0216111 Al Aug. 23,2012

Related U.S. Application Data

Continuation of application No. 12/290,422, filed on
Oct. 1, 2007, now Pat. No. 8,171,396, which is a
continuation of application No. 11/371,768, filed on
Mar. 9, 2006, now Pat. No. 7,278,096, which is a
division of application No. 10/026,364, filed on Dec.
18, 2001, now Pat. No. 7,036,072.

Int. Cl.
GOGF 3/00 (2006.01)
GOGF 17/22 (2006.01)
U.S. CL
CPC ... GO6F 17/2247 (2013.01); GOGF 17/227
(2013.01)
(403

(58) Field of Classification Search
CPC oo, GOG6F 17/227; GOG6F 1/22477
USPC 715/200, 234, 243, 254, 255
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
4,402,569 A 9/1983 Bow et al.
4,418,689 A 12/1983 Kanazawa et al.
4,944,738 A 7/1990 Rodriguez
5,269,779 A 12/1993 Sogawa et al.
5,300,061 A 4/1994 Easley et al.
5,557,798 A 9/1996 Skeen et al.
5,607,420 A 3/1997 Schuman
(Continued)
FOREIGN PATENT DOCUMENTS
EP 0704795 Al 4/1996
WO 9834179 Al 8/1998
OTHER PUBLICATIONS

Bergeron et al. “Managing EDI for corporate advantage: A longitu-
dinal study,” Information & Management, 31, 1997, pp. 319-333,
Elsevier.

(Continued)

Primary Examiner — Kyle Stork
(74) Attorney, Agent, or Firm — Haynes Beffel & Wolfeld
LLP

(57) ABSTRACT

The present invention includes a method and device for
updating a self-describing, structured document. A further
aspect of the present invention is enabling client-based modi-
fication of the document. Additional aspects of the present
invention are described in the claims, specification and draw-
ings.

17 Claims, 25 Drawing Sheets

HTTP request

retur hack . 604
HTML il 607
602 -
- XCBL Mailbox |+
TP 2 Browser Servlet Reriares Database
L1 Document

XML response

AML

Web Server, unning JAun
Seiviet runner

Store doc

XpC | inDB 6

document
601 sent 606

TP 1 Comnector

Portal Router

609
xCBL Mailbox
XPC Service

US 9,135,226 B2
Page 2

(56)

5,662,646
5,684,985
5,733,279
5,734,916
5,742,845
5,772,658
5,778,400
5,790,677
5,812,999
5,923,833
5,963,641
5,983,200
6,012,098
6,026,432
6,049,785
6,055,513
6,125,391
6,138,129
6,216,158
6,226,675
6,230,201
6,240,407
6,243,501
6,311,194
6,330,573
6,330,574
6,338,067
6,360,215
6,421,656
6,480,860
6,493,702
6,507,857
6,538,673
6,553,364
6,582,474
6,589,291
6,591,260
6,635,089
6,650,433
6,684,204
6,699,239
6,715,129
6,721,727
6,874,141
6,917,937
7,010,533
7,036,072
7,058,886
7,072,984
7,089,583
7,237,191
7,266,766
7,266,814
7,278,096
7,305,614
7,321,870
7,415,669
7,707,492
2001/0049650
2001/0056429
2002/0002586
2002/0049788
2002/0054090
2002/0069083
2002/0083093
2002/0087592
2002/0099735
2002/0107881
2002/0116421
2002/0135621
2002/0143818
2002/0143823
2002/0147847
2002/0156803
2003/0041076

References Cited

U.S. PATENT DOCUMENTS

B e e e 0 B 0 B B B>)

9/1997
11/1997
3/1998
3/1998
4/1998
6/1998
7/1998
8/1998
9/1998
7/1999
10/1999
11/1999
1/2000
2/2000
4/2000
4/2000
9/2000
10/2000
4/2001
5/2001
5/2001
5/2001
6/2001
10/2001
12/2001
12/2001
1/2002
3/2002
7/2002
11/2002
12/2002
1/2003
3/2003
4/2003
6/2003
7/2003
7/2003
10/2003
11/2003
1/2004
3/2004
3/2004
4/2004
3/2005
7/2005
3/2006
4/2006
6/2006
7/2006
8/2006
6/2007
9/2007
9/2007
10/2007
12/2007
1/2008
8/2008
4/2010
12/2001
12/2001
1/2002
4/2002
5/2002
6/2002
6/2002
7/2002
7/2002
8/2002
8/2002
9/2002
10/2002
10/2002
10/2002
10/2002
2/2003

Fumich
Ahmadi et al.
Konwitz et al.
Greenfield et al.
Wagner
Konwitz et al.
Tateno et al.
Fox et al.
Tateno
Freund et al.
Crandall et al.
Slotznick
Bayeh et al.
Potts, Jr.
Gifford

Katz et al.
Meltzer et al.
Combs

Luo et al.
Meltzer et al.
Guck et al.
Chang et al.
Jamali

Sheth et al.
Salisbury et al.
Murashita
Baker et al.
Judd et al.
Cheng et al.
Monday
Adar et al.
Yalcinalp
Maslov

Wu

LaMarca et al.
Boag et al.

Schwarzhoff et al.

Burkett et al.
Keane et al.
Lal

Stiller et al.
Hind et al.
Chau et al.
Swamy et al.
Rubendall
Kutsumi et al.
Sulistio et al.
Sulistio et al.
Polonsky et al.
Mehra et al.
Sulistio et al.
Claussen et al.
Bosworth et al.
Sulistio et al.
Chen et al.
Comiskey et al.
Davidson et al.
Zaharkin
Moshal et al.
Moore et al.
Rafal et al.
Lipkin et al.
Silva et al.
Harter et al.
Goodisman et al.
Ghani
Schroeder et al.
Patel

Fox et al.
Angiulo et al.
Roberts et al.
Stevens
Brewster et al.
Maslov et al.
Lucovsky et al.

2003/0065874 Al 4/2003 Marron et al.
2003/0088824 Al 5/2003 Ayan
2003/0125929 Al 7/2003 Bergstraesser et al.
2003/0140034 Al 7/2003 Probst et al.
2003/0208473 Al 11/2003 Lennon
2004/0162773 Al 8/2004 Del Rey et al.
2004/0205448 Al 10/2004 Grefenstette et al.
2004/0205456 Al 10/2004 Hammock et al.
2004/0205459 Al 10/2004 Green
2004/0205615 Al 10/2004 Birder
2004/0205644 Al 10/2004 Shaughnessy et al.
2006/0156224 Al 7/2006 Sulistio et al.
2008/0301544 Al 12/2008 Davidson et al.
2008/0306883 Al 12/2008 Baffier et al.
2009/0043798 Al 2/2009 Tan et al.
2010/0333153 Al 12/2010 Sahota et al.

OTHER PUBLICATIONS

Bonometti, Robert et al., “The Walls Coming Down: Interoperability
Opens the Electronic City,” Te Future of the Electronic Marketplace,
The MIT Press, Cambridge, Massachusetts, 1998, pp. 265-301.
Bort, Richard, et al. “EDI on the Internet,” Handbook of EDI, 1997,
pp. B7-1-B7-19, Warren, Gorham & Lamont, USA.

Bray, Tim, et al. (ed). “Extensible Markup Language (XML) 1.0,”
W3C Recommendation, Feb. 10, 1998, http://www.w3.0org/TR/
1998/REC-xml-19980210.

Gallego, Isabel, et al. “Distributed Models for Brokerage on Elec-
tronic Commerce,” TREC ’98, LINCS 1402, 1998, pp. 129-140,
Springer-Verlag Berlin Heidelberg.

Garguilo, John, et al. “Guidelines for the Evaluation of Electronic
Data Interchange Products,” DRAFT—Technical Report CAML/
CLS, Dec. 6, 1995, Gaithersburg, MD, USA.

Ghosh, Shikhar, “Making Business Sense of the Internet,” Harvard
Business Review, Mar.-Apr. 1998, pp. 126-135.

Khoo, Li-Pheng, et al., “The Potential of Intelligent Software Agents
in the World Wide Web in Automating Part Procurement,” Interna-
tional Journal of Purchasing and Materials Management, Jan. 1998,
pp. 46-52.

Riggins, Frederick, et al. “Toward a Unified View of Electronic
Commerce,” Communications of the ACM, Oct. 1998/vol. 41, No.
10, pp. 88-95.

Brickley, Dan, et al., “Resource Description Framework (RDF)
Schema Specification”, W3C Proposed Recommendation Mar. 3,
1999, W3C XP-002203858, available at http://w3.0org/TR/1999/PR-
rdf-schema-19990303, 1-29.

Beech, David, et al. (ed). “XML Schema Part 1: Structures”, W3C
Working Draft May 6, 1999, W3C XP-002203859, available at http://
www.w3.0rg/1999/05/06-xmlschema-1, 1-53.

Biron, Paul V. et al. (ed.) “XML Schema Part 2: Datatypes” World
Wide Web Consortium Working Draft May 6, 1999, W3C
XP-00203860, available at http://www.w3.0rg/1999/05/06-
xmlschema-2, 1-28.

Brown, Kent, “BizTalk: Fluent in E-Business”, XP-002203861, 1-6,
Dec. 1999.

Yeong, W., et al. “Lightweight Directory Access Protocol”, ISODE
Consortium, Mar. 1995, 20 pages.

Moats, R., “URN Syntax,” AT&T, May 1997, pp. 1-7.
Narayanaswamy, K. et al. “An Incremental Mechanism for Schema
Evolution in Engineering Domains”, IEEE 1988, pp. 294-300.
Klarlund, N., et al. “Document Structure Description 1.0”, AT&T and
BRICS 1999, XP-002203865, 1-34.

Davidson, A., et al. “Schema for Object-Oriented XML 2.0” W3C
Note Jul. 30, 1999, W3C XP-002203857, available at http://www.
w3.01g/1999/07/NOTE-SOX-19990730, 1-22.

“Document Object Model (DOM) Tutorial,” Oct. 30, 2000, <http://
web.archive.org/web/200102 1207073 8/http://www.thescarms.com/
XML/DOMTutorial.asp>, pp. 1-10.

XML and EDI: Peaceful Co-Esistence, 2001, Xedi.org White Paper,
pp. 1-15.

Van Der Vlist, Eric, “Comparing XML Schema Languages,” Dec. 12,
2001, <http://www.xml.com/pub/a/2001/12/12/schemacompare.
html>, pp. 1-7.

US 9,135,226 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Ogbuji, Chimezie, “Validating XML with Schematron,” Nov. 22,
2000, <http://www.xml.com/pub/a/2000/11/11/22/schematron.
html>, pp. 1-8.

Harold, Elliotte Rusty, et al. “XML in a Nutshell,” Jan. 2001, <http://
www.oreilly.com/catalog/xmlnut/chapter/ch09.html>, pp. 1-20.
Chappell, David, “Simple Object Access Protocol (SOAP),”
Microsoft Windows: Simple Object Access Protocol Technical
Article, Sep. 10, 1999, Microsoft Corporation, 6 pages.

Chung, P Emerald, et al. “DCOM and CORBA Side by Side, Step by
Step, and Layer by Layer,” Sep. 3, 1997, 24 pages; Can be found at:
http://www.cs. wustkedu/~schmidt/submit/Paper.html.

Finn, Tim, et al. “KQML as an Agent Communication Language,”
DRAFT, Baltimore MD, USA, Sep. 1995, 22 pages.

Fuchs, Matthew, “Domain Specific Languages for ad hoc Distributed
Applications,” USENIX Association, Conference on Domain-Spe-
cific Languages, Oct. 15-17, 1997, pp. 27-36.

Howes, Timothy, et al. “A Scalable, Deployable, Directory Service
Framework for the Internet,” Jul. 11, 1995, 12 pages. Can be found at:
http://infor.isoc.org/HMP/PAPER/173/html/paperhtml.

Khoo, Li-Ph Eng, et al., “The Potential of Intelligent Software Agents
in the World Wide Web in Automating Part Procurement,” Interna-
tional Journal of Purchasing and Materials Management, Jan. 1998,
pp. 46-52.

Kimbrough, Steven O., et al. “On Automated Message Processing in
Electronic Commerce and Work Support Systems: Speech Act
Theory and Expressive Felicity,” ACM Transactions on Information
Systems, vol. 15, No. 4, Oct. 1997, pp.321-367, New York, NY, USA.
Tenenbaum, Jay, et al.,“Eco System: An Internet Commerce Archi-
tecture,” IEEE Computer Journal, May 1997, pp. 48-55.

“The Internet—Untangling the Web,” The Economist, Apr. 23, 1998,
3 pages.

Beech, David, et al. (ed). “XML Schema Part 1: Structures”, W3C
Working Draft May 6, 1999, W3C XP-002203859, available at http://
www.w3.0rg/1999/05106-xmlschema-1, 1-53.

Liechti, Olivier, et al. “Structured graph format: XML metadata for
describing Web site structure,” Computer Networks and ISDN Sys-
tems 30 (1998) pp. 11-21.

Kiristensen, Anders, “Template resolution in XML/HTML” Com-
puter Networks ISDN Systems 30 (1998) pp. 1-16.

Dudeck, Joachim, “Aspects of Implementing and Harmonizing
Healthcare Communication Standards,” Institute of Medical
Informatics 48 (1998) pp. 163-171.

Rodriguez, Juan R., et al, “IBM Websphere Transcoding Publisher
Version 1.1: Extending Web Applications to the Pervasive World”,
IBM Redbook, 2000, 336 pages.

Carlson, Dave, “Modeling XML Vocabularies with UML: Part 1,”
Aug. 22,2001, <http://www.xml.com/pub/a/2001/08/22/uml html>,
pp. 1-5.

Harold, Elliotte Rusty, XML: Extensible Markup Language, IDG
Books Worldwide, Inc., Foster City, CA, Copyright 1998, pp. 14-15,
37-42 and 259-271, 23 pages total.

Eddy, Sandra T., et al., Teach Yourself XML, IDG Books Worldwide,
Inc., Foster City, CA, COPYRGT. 1999, pp. 303-313 and 433-443,
24 pages total.

Clark, James, “XML Path Language (Xpath): Version 1.0”, W3C
Recommendation Nov. 16, 1999, downloaded from: www.w3.org/
TR/xpath, 33 pages.

Holman, G Ken, “What is XSLT”, downloaded from: http://www.
xml.com/pub/a/2000/08/holman/index.html, Dec. 7, 2000, 337
pages.

“The American Heritage College Dictionary,” 4th Edition, Houghton
Mifflin Co., Boston, Copyright 2002, p. 705.

Freire, Julianna, et al., “WebViews: Accessing Personalized Web
Content and Services”, WWW 10, Hong Kong, May 1-5, 2001, pp.
576-586.

Altinel, Mehmet, et al., “Efficient Filtering of XML Documents for
Seletive Dissemination of Information”, Proceedings of the VLDB
Conference, Cairo, Egypt, Sep. 10-14, 2000, pp. 53-64.
Ambroziak, Jacek, “Managing Tokenizers in XML Search”, XML
Europe 2000, Paris, France, Jun. 12-16, 2000, pp. 1-7 (plus citation).
“GCA Conference Flyers”, XML Europe 2000, Paris, France, Jun.
12-16, 2000, pp. 1-2.

“XML Query Engine Provides Initial XQuery Support”, XML
Coverpages, downloaded from: xml.coverpages.org/ni2001-04-27-
c.html, Apr. 27, 2001, 1 page.

“Deja Power Search Graphical User interface”, downloaded from:
web.archive.org/web/1999100823 1252 /http://www.exit109.com/.
about jeremy/n-ews/deja.html, dated Sep. 23, 1999, pp. 1-20.
Egnor, David, et al., “Structured Information Retrieval Using XML”,
Proceedings of the ACM SIGIR 2000 Workshop on XML and Infor-
mation Retrieval, Athens, Greece, Jul. 2000, pp. 1-10 (downloaded
from:web.archive.org/web/20010723 114842 /http://www.haifa.il.
ibm.com/sigir00-xm- /final-papers/Egnor/).

Ide, Nancy, The XML Framework and Its Implications for Corpus
Access and Use, published 2000, 5 pages.

Kay, Michael, “XLST 2.0 and XPath 2.0, Programmer’s Reference,
4th edtiion”, Wiley Publising, Inc., 2008, 1371 pages.

Kay, Michael, “Things XSLT Can’t Do”, www.dpawson.co.uk/xsl/
sect2/nono html#d 1874e495 (accessed Aug. 9, 2012), 19 pages.
Clark, James, XSLTransformations (XSLT) Version 1.0 W3C Rec-
ommendation Nov. 16, 1999, 99 pages.

“Deja Power Search Graphical User interface”, downloaded from:
www.exit 109.com/.about. jeremy/news/deja.html, .COPYRGT. Feb.
12, 2000, pp. 1-20.

Seilonen, etal., Experience from the Development of an XML/XSLT-
based Integration Server for a Virtual Enterprise Type Co-Operation,
published by 7th International Conference on Concurrent Enterpris-
ing Jun. 27-29, 2001, pp. 32-328.

Nair, Deepa R., Visual Design Versus Development: A Case Study
Presenting How XML and XSLT Can Separate Presentation From
Data, published by University of Florida, 2001, 97 pages.

U.S. Patent

Sep. 15, 2015

XCBLMailBox
Home

Compose

Sheet 1 of 25

US 9,135,226 B2

Document Reply
Screen (Copy and Reply)

121 131
Folder Management Document Export
Screen Display
Export
{
12 2
Export
Document Search Dis
play Document
Screen (Part of :
HonePage (Rip and Read)
m 4
List of Documents Replyable Document Type
ina Folder Selection Screen
124
Document Type Document Compose
Selection Scregn Sereen (Type and Send|

FIG. 1

U.S. Patent Sep. 15, 2015 Sheet 2 of 25 US 9,135,226 B2

211 2
% home = help = log off
camzﬁggggxﬁ CUser: Matthew Weprin 7 o
SupplyOrder_Organization: Application Foundation /Your Logo Here
View Inbox | [Welcome, Rubicon
Co_mm """ Folder Name Documents Unread
............................. Inbox 03 58
zﬁ Draft 0 0
............................. Sent k 53 16
Addresses | |Trash [Empty] 6 6
DEolders Custom Folder 1 1 0
Ty Custom Folder 2 0 0
Custom Folder 3 12 0
Custom Folder 4 53 0
Custom Folder 5 12 0
TOTAL 819 158
220/ 23 20

FIG. 2

U.S. Patent Sep. 15, 2015 Sheet 3 of 25 US 9,135,226 B2

ID

(‘é? home = help = log off>/

COMMERCE 48

one S /“User: Matthew Weprin
SupplyOrder\ Organization: Application Foundation /Your Logo Here

View Inbox | {Inbox

.................................. |\

Compose | Injspiaying 1-12/73 Page [/10 [Go] [M[€)][]

(S)ea:irg:s 332Tradmg Partn g\ Date — 334) Document Type |Size ActiorL
.. e (3™ Company 123, 052520011205 abedefg 56k
e | Comany 125 (55001 05 ahdely 45
(" Inbox 1| [Company 123 052520011205 abedefy 40b
ge_"ftt] Company123 052520011205 abedefy 1mb [B
Draft)
Trash [Empt [] Company 123 (52572001 1205335/abcdefg 56k M
CustomFolder 1 [| [] Company 123 052520011205 abcdefy 45k <
Cuson Folder 2\ 7 Company 123 0525001 1205 abedefy 40b 50 B¢
Custom Folder 3
(b 1< B
Custom Focer [] Company123 (052620011205 abedefg{ 1mb < -
Custom Folder5 || Check All - Clear Al %
. Delete Select Folder... || | Move
-
B Displaying 1-12/73 Page | |/ 10 |Go WP

[d

FIG. 3

U.S. Patent Sep. 15, 2015 Sheet 4 of 25 US 9,135,226 B2

»

21
(@ home % help = log off>/ -

COMMERCE

GNEQ@

COMMERCEONE ~ User: Angela Baxter
XCBL Mailbox_Organization: Application Foundation

REPLY TO: Trading Partner Name - Document Type Cancel
|
441
Select Document Type | Select Document Type...|w| |Continue

Trading Partner Name: [TP NAME] l

Trading Partner Short Name: [TP SHORT NAME]
MPID: [MPID]

43

Trash [Empty

Custom Folder 1
Custom Folder 2
Custom Folder 3
Custom Folder 4
Custom Folder

Cancel

01
U
331

1|

FIG. 4

U.S. Patent Sep. 15, 2015 Sheet 5 of 25 US 9,135,226 B2

(@ home % help = log off>/211 "

COMMERCEONE / User: Angela Baxter o
xCBL Mailhox<0rganization: Application FoundatioJcaMMEgﬁgg@
View Inbox A
T Fel [Seect. |v] | Select. [v]-s18 4
.................................. 5]2/ the phrase or word:

Search 514

Options

bAddresses || Filter by dates:| @nofier 515
Folders osat[- [~ [¥|[1se7]¥] exe- o[- Te|froe7).

Inbox

Sent Filter by Status:| | Select.. [w[-516

Dra Filter by

Trash [Erpt] Trading Partner; o

Custom Folder 1 -

Custom Folder 2 D%ﬁ%;l;g No Restrictions |w|-518

Custom Folder 3

Custom Folder 4 Look in:|(M Inbox Draft Sent

Custom Folder 5 MTrash M Custom Folder 1 14 Custom Folder 2

7] 14 Custom Folder 3 M Custom Folder 4 14 Custom Folder 3

R B Checkall Clear all 519

Clear | |Search

FIG.5

U.S. Patent Sep. 15, 2015 Sheet 6 of 25 US 9,135,226 B2

603
HTTP request
retum back . 604
HTML %
0 . 607
- XCBL Mailbox |«
TP 2 Browser Servlet Retrioies Database
rd Document
Web Server, running JRun
ML response senlet runner Store doc
" XpC | inDB 608
1
document
i sen . cBL il
. - X iIhox
TP 1 Connector Portal Router YPC Seryice

FIG. 6

U.S. Patent Sep. 15, 2015 Sheet 7 of 25 US 9,135,226 B2

incoming XPC

L1 4CBL SOX
Document

Sender

—108

*Persistently index and

(Lialbor store (6.0, file or DB) LB =712

Document
Recaiver
Service

T
MN— 1

*Optionallynotity 93 07
(6., email) F. Data

~
~ \StEE/

70 T
Ne— 1

WebServer + JRun 3 Servlet Container (720 41
10 123 A. Schema

Inbox Read Repository
'I' Document [| ——"1

m

14 125 142

- = J7AR e and/or e
Netscape or \ \CBLV Folder | Custom Attaché - B. Bean
Internet Explorer Mailbox | Momt |~ Folder EF epository
Home 128 143
Page | 126 | 1z | " Download C. Document Ny
Search| Document| xCBL Repasitory [CBL
DF List | Documents xCBLandxCAL

0 gxport fomat
o Xp@
XML Transformation Engine 4

132 0. Report Layout

I T B Jepositon
- XI\/ILEPres Selector \Tﬁ/
CDE F Presentato
Layout Repository
(U10.30X, S0K)
@

746
0. Yellow Pages
Transmission
FIG 7 Properties
] '\d

747

H. Trading Parngr
Directory
N—

U.S. Patent Sep. 15, 2015 Sheet 8 of 25 US 9,135,226 B2

831 832 833
830
«][«][= J||FIG
.8
844 845 846
847 848 849
840
800

FIG. 9

U.S. Patent

Sep. 15, 2015

Sheet 9 of 25

RR_Field_Defintion 1012

RR_Searchabis Feld

US 9,135,226 B2

m
.{—'iﬂl&.

AR Dcument_Tyge -1010
Tyoe: ffawmem DENTITY

RR_Freld_Defimition_iD:
ENOT VUL

AR_Searchable Fieid ID:
decimall 1S NOT NULL

Type: nvarcharl80) NOT NULL
Narne_Space: mvarchar 10G0)

fype_iD: it NOTRULL
Name: vare ha f{896; NOT NULL

NOTAULL

‘s

AR Document Map — ~1on

Document_Seq_Num:
decimall 19 NOT NULL
RR_Field Defintion_1D:
nt NOT NULL

Value: nvarchan3900) NULL

|

AR _Document A1 é

iR _Dacument_Map_l)
it NOTNULL

Document_Seq_Num: decimal(19]
IGENTITY

MPID: nvarcharl50} NOT NULL

Typs_I0: Int NOT NULL

Mapped_To_Type_IIx
Int NOT NULL

A3 Status 3

{

Status_I0: It NOT NULL

Document 1D: nvarchar(50) NULL
Sonder MPID: marcharls0 NOT UL
Sender_Name: nvarchar{1 DL
Racaiver MPID:

nvarchar(50) NOT NULL
Hacawer Name:

nvarcharl100) NULL
Type_ID: Int NOT NULL

Status: pvarchar D01 NU

Data: ntext NULL

Envelope: Image ’\EULL

Status_ID: Int NOT NULL

Raceived Dats: datetime NULL

Status_Change_Date:
datetime NULL

Folder_Type_ID: Int NOT NULL

RR_OrégmaE_Socumeﬁt 103

aeument aeq Hum
rerma ROTNUL

(€]

O.av_n‘.ai_Domﬁm

image NOT NULL

RR_Folder_Type 104

Foldar_Type_ID):

Document_Attachment

it IDENTITY

MPID: nvarchar (50}
NOTNULL
Name: nvarchar

(100} NOT NULL

-~

AR
A

R Documant A

Hachment D ﬁecm“aii 91 IDENTITY

L

Document_Seq_Num: decimal{19)
URI nvarchar{dds) NOT NULL
Fiie_Name: nvarchan(Z551 NULL
Mime_Type: nvarchar(35) NULL
Image_Data; Image NULL
Status_{0: Int NOT NULL

NOTNULL

U.S. Patent Sep. 15, 2015 Sheet 10 of 25 US 9,135,226 B2

111 Web Server
1112 Servlet Runner
1113 Servlet Controller 1114 JSP Pages
A <_
n na ny nu 1% 126
Data | [XMLPres Rule XML Folder XPost
Access Selector | | Engine [J{ Mgmt | |Interpreter
Layer
x
1131 Email Notification)
132 JIRH 134
Emall Data Access JavaMail
Module Layer
t 1151
. database
1141 XCBL Mailbox XPC Service A
19 XPC e
143 XCBL Mailbox Senvice " 1152
Y MSB Data
114 1% 1146 (LDAP + DB
Data Access || XMLpres | [XML Enging
Layer Utility for custom sgarch)

FIG. 11

U.S. Patent Sep. 15, 2015 Sheet 11 of 25 US 9,135,226 B2

132
Display Document 18
m R o
Transformation [~ XML—> XML Reply
Mapping s -
~d @B List of Repliable
Documents
L2 — Document Type
Document [XML->HIML | oojertion Sereen
XSL fransform I
Select
\
ErrorDoc
AL L Document Update
fansiom Vagde?]tel?gtga”/ Sereen 1Cop|y and Reply|
\ / Field Validate
1213 =D 1A o
en
Shﬂ Document
Document with Error Msg + HepI\éDo'cument Cgﬁgﬁgm
User Inputs lSPaY /
Up(iate Document Validate
Document m/ 12
Validation Fail
enerate Display Updated | S2veas Dreft | rolder Management
Document (Rip and Read|

FIG. 12

U.S. Patent Sep. 15, 2015 Sheet 12 of 25 US 9,135,226 B2
a1 e
COMMERCEONE (1) home @ hep = logoff) R
xCBL Mailbox / User: admin 21 XCBL Mailbox
/__mﬁOrganization: OrglD my, Backto st of documents
View Inbox 1301— Send || Save as Draft| | Validate | |Reset
rch Ta03
Search Draft)i h AddEdi Atachments
Options | (Reply To: Rubicon)12
_Folders / (Quote)iz 1
nbox Quote Header. Quote Issue Date:
(Draft \ | *Quote# (Please Input as MM/dd/yyyy)
Sent PC-009
Trash [Empty]
Abc . 6uote Sent to Buyer:ABB-1010 From Seller:ABB-1010 h
@y ABB Comnerstone Company ABB Comerstone Company N
orian 45 Terrance Blvd. 45 Terrance Blvd., 1315
C_ 0 7th Floor 7th Floor
OMMErCe INE | | Ayction Department Auction Department
m Angelville, USCA96660 Angelville, USCA96660
Hij \US US J
RollsRoyce Quote Detail; (13
7 [Quote Item Detail 1 [Add Ling ltem])
*Quote Type - [Remove Line Iteml
v [
| | L1322)
*ltem Part# Description Qty UM
1 T-770-0-56 =% \1g5 6000000.00 EA -1
~1323 ng
To Be Completed by Offeror:
*Unit Price: *UIM (138 *Total Price
i | 4|
Attachment: W 131
1332 1305 —Add Attachment
Quote Summary: L—/
E FIG. 13

U.S. Patent Sep. 15, 2015 Sheet 13 of 25 US 9,135,226 B2
141 1402, 1413, 1404 1435, 1436,
Browser Servlet | [RulesSelactor | {Transformation | | Database | | XML Enging

Vigw an RFQ Document
S
T Teply
WY s mappngof AP doc
] inguire L7
. “
s | Listof doc mapped toRF0 L
List of Doc Avallable
1416
u Select Quote
Transform to Quo
{ 18]]
T getUs XL
-
wer persist the Quote document ,
1420 | . !
T load the Quote doc into DOM treg
hd [
display the Quote HTML Form |
-
14

update field
14@[]p—1£ ot Qe XL fom
| |

1‘@? create DOM tree for Quote
L4 I L

upda te the DOM tree based on new (ata

i .
L gene eXl\/ILmsanceofOuo
persist new XML inst ance H
1) gl
display updated (uote HTML T
waT !

FIG. 14

U.S. Patent Sep. 15, 2015 Sheet 14 of 25 US 9,135,226 B2

1501 1502, 1303+ 150k 1505, 1506 1507,
XM Servet | {: XMOBbiEactory | | Reouest Contaner | | :JAction | {:RR Selectdetion| | : ICommand | | xmiTransfomCr

1 createXMObjFactony) :
L

| I I

bl I I | |

T Llieate HequestContainerIII | | I I

1512 ' | I I I

73: createAction(XMObjFectory, RequestContaingr) I : : :

1513 ' ' I.}I

1 I I | | |

I I | 4 create) | | | |

| 1514 | | 0 | |

| LI“I 5 executeAction|) ! ! I I

IIIE_ I I - IfIB: createCommands XML ractory, RequestContangr|

: | I | 7:oreate)) | ! |

1517 i i | | i

I LI,I | | 158 L (B execute)

| | | | = | u
g | | 15 get/SPPage()! | |

il I I | U | |

| | | | | |

| | | | | | |

| | | | | | |

FIG. 15

U.S. Patent Sep. 15, 2015 Sheet 15 of 25 US 9,135,226 B2

1601+ 1602, 1603+ T4+ 1605+ 1606+
KCBIMailbox Servlet [| lerator | | XPostInterprater | | AccessControl{ [XML Engine Unmaske

1111 HTTPSe Iviet Heques) i
i 16124 build XPos Datal) E

16131 processkPostRequest(XPostData, Environment))
i ! 1614} Secur |tyCheck()

15 SecurCheckRetun
51 instantiate])

121;5 el Unmaskinput Data()
1519! UpdateXML
(o1} XI\/ILIns tancelpdated]

RetunXML ns tancel)

1621
Cle

¥

U.S. Patent

m
HTML

Sep. 15, 2015 Sheet 16 of 25 US 9,135,226 B2
A
Web Server
HTTP 1703 XPost Commands 10
XPost Interpreter Hash Table
Update
71
Database | ~
m
XML Instance

~N_

FIG.

17

U.S. Patent Sep. 15, 2015 Sheet 17 of 25 US 9,135,226 B2

o™ e e
p
W |]
))

w5 |

w6 |

=
"

U.S. Patent Sep. 15, 2015 Sheet 18 of 25 US 9,135,226 B2

z—f—
203 M

A\
~>
—
=t
J

|_\'\"
D
I
~
=
~
<1

U.S. Patent Sep. 15, 2015 Sheet 19 of 25 US 9,135,226 B2

o
XPath Searchable
Fielo

03
Filter XPath

n 2
XCBL Document

NO -

XCBL Mailbox XPC Further Processing

Service

y

o
Persist Data

b
Persist Filtered Data

FIG. 22

US 9,135,226 B2

Sheet 20 of 25

Sep. 15, 2015

U.S. Patent

| €2 9l

l [[»
A LA [A ELy [

| 0 0'}$X08797:760):8U080I8WWO. WO JUBWINI0P:BU0B0IAWWOO-K:UN lsplosseyoind ¢
<TINN> 0 0'}$¥08°},0780:},07803U080ISUILIOD; LIO:JUBLINIOY:3U0B0IAWWOO-X.UN lpigaseyand ¢ |
| 0 0'}$¥08°,0780:1,0780:8U080IBUILIO0; WOXJUBLINION: 3U030IBWUOO-X.UN s 7|]
<TINN> 0 ('}$X0S06799X:0671d0X:3U0BISIILIO);LIOYIUSWNION:BUOBOISWOO-X:UIN 8010AU| L
| 0 0'14X0S'GETAX:SETAOX:BU0R0IBWILIOY;WOYIUSWNIOP:AUORIIALILIOd-X.UIN oo 0L |
<TINN> 0 0'}$X08" L (7180:}0760-8U080IBWIO:OJUBINI0Y:BUOBOIBLILIOO-X: U \JUBLLAIYSBOUBADY 6 |
<TINN> 0 0'}$X08°0£180X:06 80X 8U0QIBWWOY:WOIUSWINI0N:BUOBOIBILIOdX:UN \JUBLICIYSBOUBADY ol |
<TINN> 0 0'}4X08'GETG0X 56 TN SU0BISUILOY:WONIUBLINO0Y:BUOBOIALILIOd-X:UIN \JUBLUAIYSBOUBADY]
<TINN> 0 ('14X08'08T89X:08TA0X:5U0B0IBUILIOO:UWOY:JUSWNIOP:BUOSOIALILIOd-X:UIN 18plQ 9 |
| 0 ('}$X0S'GETEIX-GETA0X:BU0BIBLILIO);LIOYIUSWNON:BUOBISWWOO-X:UIN 18plo Gl |
| 0 ('14X08'08T89X:08TA0X:BU0B0IBWILOY:WOYIUSWNIO:BUOBAIALILIOI-X.UIN 8jonp Pl
<TINN> 0 ('14X08'GETAOX:GETAX:OU0ROIBUILIOO:WOY:JUSWNIOP:BUOBOIALILIOY-X:UIN 8jonp) el |
| 0 0'1$X08°0£190X:08T80X:SU0BQIBUIOYWOYIUSWNION:BU030IBILIOI-X:UIN ejony) Jojsenbay AR
| 0 0'}4X08'GE 90X GE TN BU0BIBUILOY:WOYIUBLINIOP:3U0BDIALLILIOIX:UIN ejony) Jojsenbay L«

pleal?) uoneajady | pauodang | 8080S BWep o0k || @ odA]
S, O EWSHAEL - REFEI=T ===
Jo Buepeh oA o 10y SMEIECY Pt OO L doH mopuilh ejosuod R |

[XIo [.d33r, uo 02" Wx, i ,2dAL Juawnooq ¥y, aiqeL. ul ejeq:z] - sebeuely asudigjuz Jeniag T0S 1

US 9,135,226 B2

Sheet 21 of 25

Sep. 15, 2015

U.S. Patent

viZ 94

801A | 3010AU|/45DBSHB0I0AU|/SOIONU/ 7).)0)-00L-886906) o]
LINNJY Y94 T80 80URIBBY X184 180/ el ddNGB0I0AU HBPEBHB0I0NU|/8OI0AU]/ 7], 10)-00L-88600%6) |]
8JIPONSS|8OIOAU|JBPBOHBOIOAUI/B0I0MU/ 7} 01-90L/-09600m8) L] |
fUBLINDBOIOAU| XIIRIA TG0/BPESHB0I0NU|BOIOALYS 7} 0L-90LL-0600861 G| |
LUNN}9Y/80URIR}8Y/|810ND/IBDEBHBIOND/BIOND) ¥ J0L-00L-88680%8l)] |
papogyedA | ajontyyadk| sjongy/adh | wayjaiongylsieigeiontysiielegaloniQIs/aonD, b)0l-00..-88690%6) 0 |
BUIBN@4, usuyEny AUBWYIENIOISIAUBWUIEN OIS TSN BoN) ,JSIEaqaonty Sl qeonDjOIsT/8iony) ¥ 01-00L-88680m8) 78| |
papogeouealuBISB)anieAfnueny AuentAuenDlelo el quaysiontyl, siEisgaiong selegelonDiIs/aony) ¢ 01001886806 L7 |
papogsuonpuo)@/eniefuentyAiuentyAnueng Elo L ielsquisisiontyl Jsieiaeiong/sieiegaiongiolsTaiony, b 01000960 67 |
_oemz\mwebgmsmz\ém&émmhm\sm\émn__ogo\%mn_go:ouw%Umm_obmm_._gosgmm3cmw_\co_ﬁo:o_o“_gm%gm\ ¢ 101-90/ /9369076 §|
E:z_mm_\moce&om\o_eosouwosUmw._t%mm_._&o:gm%Umm\co__gosoho“_uw%com\ ¢ 101-90, /9369076 [
N AUen)Auentjelo L eiaquie)ssegesguwaleiongisanbay Jeiagaongisenbays|eisgongisenbaxOisITIolEIoNDI0Jsenbay 7)01-90//-9969s6) B

JoUINE SIal 30|l Jaquua) BSeg) ejaquualplonisanta T, JS|eiagslongIsanbay sl QaionDsenbQiSITLoNEIOnD.04sanbaY, 7 004-90LL-98690)

papoDaaA L sjonpyadA | sjont)/adh | Waljsjong), SIeIeeIonD/SIEI8sIONDIOISBIOND) 1)0-94LLHEI7SR8)
8UIBN8]14/, BN AUSWUYIENYIOISI TAUBLIUOBRYIOIS WS BIONT) [, [SIEI8qIonD /Sl EIsasIonDIOIST/IND) ¢ I0K00LLS7S #e| |
papogsuaipuoa@/eniefnuentykyueng Auenpleloiejsquisysiont l siesgaiong/siesgaionoiolsisiond ¢ 0Ly 97 |
SWeN| QIdiN[uouliaq
adf] LAY
LT 4Nl | LI EMES]| &

djgH mopuilh 8josud Hll |

.d33r, uo 0 Wx, ur 2dA Juswinaoq Yy, 8|qe] ul ejeq:z] - Jabeueyy astidisju3 jeaisg 108 Tl

US 9,135,226 B2

Sheet 22 of 25

Sep. 15, 2015

U.S. Patent

dave 9l

l | >
Wil il 1l 07]
4180180 B0I0NU 8 B0I0AU PaIB B 1300 DaIEI IS SIBN SO0 SIoYEIACR0I0NU | IBIS 0N IEIBIBOIRIQISTA0ON 2})01-001L-0865016) oo |
JuNOWNYXe | XI§aidT4O/XE /| 1€18(]e10AU|/|IE}eS10AUNCISIT/BdI0AU/ ¢})01-90LL-28606} o]

LIHUN XIyBId 13O/ EIBRII0AU|IIEIBROI0AUNOISTT/BI0AU ¢})01-90LL-08696} I
(IMed Xyld TIUNNMES X8I TEO/MWNNMEAIYdANG X}l TG/ BIREBOIOAU| IE}BCDIONUIOISI /B0IONU 7 01901386906} 0 |
WNNW}{8UIT.X1}eld T3J/IEYe0II0AU|IEIJOI0AUIQISI/8I0AU 7])0}-9dLL-886964 ol |
3N/BAION:XJ0.d T8)/SIEIOLOIOAU|/AIBUILINGSOIOAU/SOIONU/ 7})0}-00LL-986806) o]
N[EASSOIS)XIjald 8)/S{EIOL80I0AU]/AIBILINGBIOAUI B0I0NU]/ 7} 10}-09,L-296801) i

U.S. Patent Sep. 15, 2015 Sheet 23 of 25 US 9,135,226 B2

#

The file is for the displaying the XPath information in search page.

Default is empty. You can put the XPath and information Like:

Order/OrderHeader/OrderNumber/BuyerOrderNumber = Purchase Order Number

#
o]

/70rder/0rderHeader/0rderNumber/BuyerOrderNumber = PO#)
/Order/OrderHeader/Purpose/PurposeCoded/ = PO Purpose
/Order/OrderHeader/OrderParty/BuyerParty/Party/PartyID/Identifier/Ident = Buyer ID
/Order/OrderHeader/OrderParty/SellerParty/Party/PartyID/Identifier/Agency/AgencyCoded
= Seller Agency Coded
/PriceCheckRequest/PriceCheckRequestDetail/ListOfPriceCheckRequestItembDetail/PriceChe
ckRequestItemDetail/PriceCheckRequestBaseltemDetail/LineltemNum/BuyerLineltemNum =
Buyer Line Item Number
/Quote/QuoteHeader/QuotelD/Reference/RefNum = Reply Quote #
fQuote/ListOfQuoteDetails/QuoteDetailsC*]/QuoteltemType/QuoteType/QuoteTypeCoded =
Type
/RequestForQuotation/Request@QuoteHeader/RequestQuoteID/Reference/RefNum = PO#
/RequestForQuotation/RequestQuoteHeader/RequestQuoteParty/OrderParty/BuyerParty/Party
/NameAddress/Namel = Buyer Name

J

#

g oxkxxkxdt Myltiple occurrence *¥tkxkkx rzmz

#

/'/Quote/ListOfQuoteDetaiLs/QuoteDetaiLs[*]/QuoteItemDetaiL/TotaLQuantity/Quantity/Quan‘\
tityValue/2ConditionsCoded = Quantity Coded (attribute)
/Quote/List0fQuoteDetails/QuoteDetailsC*]/QuoteltemDetail/TotalQuantity/Quantity/Quan
tityValue/dSignificanceCoded = Signific (attribute)
/Quote/List0fQuotedetails/QuoteDetailsC*]/QuoteltemlistOfAttachment/ListOfAttachment/
Attachment[*1/FileName = Attach File
/RequestForQuotation/List0fRequestQuoteDetails/RequestQuoteDetails[*]/RequestQuotelte
mbetail/BaseltemDetail/ItemIdentifiers/PartNumbers/BuyerPartNumber/PartNum/PartID =
Part Number
/RequestForQuotation/List0fRequestQuoteDetails/RequestQuoteDetails[*]/RequestQuotelte
mDetail/BaseltemDetail/LineltemNum/BuyerLineltemNum = Line Item#
/RequestForQuotation/List0fRequestQuoteDetails/RequestQuoteDetails[*]/RequestQuotelte
mbetail/BaseltemDetail/TotalQuantity/Quantity/QuantityValue/aSignificanceCoded = QTY
Code (attr.)
/AdvanceShipmentNotice/ASNHeader/ASNParty/OrderParty/SellerParty/Party/0therContacts/
List0fContact/Contact[*1/ContactName = Contact Name

_ J
#
§ *kxkkxkk Different name space *¥k¥kkkk rzma

#
/,/ChangeOrder/ChangeOrderHeader/CBLPrefix\:OrderReference/CBLPrefix\:AccountCode/CBLPr‘\
efix\:Reference/CBLPrefix\:RefNum = Tester_R#
/ChangeOrder/ChangeOrderHeader/CBLPrefix\:P0IssueDate = PO Date
/ChangeOrder/ChangeOrderHeader/CBLPrefix\:RequestedDeliveryDate = Delivery Date
/ChangeOrder/ChangeOrderHeader/CBLPrefix\:ShipByDate = Ship Date
/ChangeOrder/ChangeOrderHeader/CBLPrefix\:0rderReference/CBLPrefix\:AccountCode/CBLPr
efix\:Reference/CBLPrefix\:RefNum = Acc R#
/ChangeOrder/ChangeOrderHeader/CBLPrefix\:OrderParty/CBLPrefix\:BuyerParty/CBLPrefix\
:Party/@PartyID = Party ID (attribute)
/ChangeOrder/ChangeOrderHeader/CBLPrefix\:0rderParty/CBLPrefix\:BuyerParty/CBLPrefix\
\fParty/aAgencyID = Agency ID (attribute)

FIG. 25

J

U.S. Patent Sep. 15, 2015 Sheet 24 of 25 US 9,135,226 B2

7w SQL Server Enterprise Manager - [2:Data in Table 'RR_Searchable_Field" in "XM_20' on JEEP] mmIE3

% Console Window Help (O]
| =BaE|F| | &VIHIHKIEIS
RR_Sérchable Document_Seq Nu|RR_Field_Definiion|Value =
| [218 313 34 Contemporary Resume.dot
| (219 373 36 Accept
(220 313 36 Decline
| |221 375 26 Actual
|22 375 34 commerceone.gif
| [223 315 34 test.ppt
| (224 315 36 Accept
| (225 375 36 Decline
| (226 378 17 20010629711:40:04
| (227 318 1 cfsiqux
| [228 378 3 Other
| (229 378 14 731553717078757.76
| (230 378 13 102124846200985.858
| (231 378 6 -1025433866
| (232 3718 10 rjsupio
| (233 378 11 354510583455326.450
| (234 378 12 54445096814106.333
| |23 378 38 vymircey
| (236 378 38 svrjgevaql
| [237 318 38 riemopkh
| [238 378 38 lijght
| (239 387 41 T-77-0-0-56
1240 387 42 TrugValue
|24 387 40 PC-009
| (242 387 44 AAA Company
| (243 388 41 T-77-0-0-56
| 244 388 42 TrugValue
| |245 388 40 PC-009
| (246 388 44 AAA Company
| [247 389 42 TrueValue

FIG. 26A

U.S. Patent Sep. 15, 2015 Sheet 25 of 25 US 9,135,226 B2

| [248 369 40 PC-009

| (249 389 44 AAA Company

| [250 391 P Actual

| 251 391 2 TrugValue

| (2562 391 32 PlanningSchedule_3_30.xml

| (253 391 32 AvallabiityToPromiseResponse_3_30.xml

| [254 391 2 Invoice_3_30.xml

| 295 391 20 Accept

| |256 391 20 Decline

057 301 19 test xpath -

| [258 392 26 Actual

| (259 392 34 PlanningSchedule_3_30.xml

| {260 392 34 AvallabilityToPromiseResponse_3_30.xml

| |261 392 34 Invoice_3_30.xml

| [262 392 36 Accept =
L0 L2 03 L !

FIG. 26B

US 9,135,226 B2

1
METHOD AND APPARATUS FOR
DECLARATIVE UPDATING OF
SELF-DESCRIBING, STRUCTURED
DOCUMENTS

PRIORITY INFORMATION

This application is a continuation of U.S. application Ser.
No. 12/290,422, filed Oct. 1, 2007, issuing as U.S. Pat. No.
8,171,396, entitled METHOD AND APPARATUS FOR
DECLARATIVE UPDATING OF SELF-DESCRIBING,
STRUCTURED DOCUMENTS, which is a continuation of
U.S. application Ser. No. 11/371,768, now U.S. Pat. No.
7,278,096, filed Mar. 9, 2006, entitled METHOD AND
APPARATUS FOR DECLARATIVE UPDATING OF
SELF-DESCRIBING, STRUCTURED DOCUMENTS.
U.S. Pat. No. 7,278,096 is a divisional of U.S. application Ser.
No. 10/026,364, filed Dec. 18, 2001, now U.S. Pat. No. 7,036,
072, entitted METHOD AND APPARATUS FOR
DECLARATIVE UPDATING OF SELF-DESCRIBING,
STRUCTURED DOCUMENTS, by the same inventors.

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application is related to the commonly
assigned, U.S. patent application Ser. No. 09/794,302, filed
on Feb. 27, 2001, now U.S. Pat. No. 7,415,669, entitled A
METHOD AND APPARATUS FOR VIEWING ELEC-
TRONIC COMMERCE-RELATED DOCUMENTS, by
inventors Andrew Everett Davidson, Kelly Lane
Schwarzhoff, Gunawan Herri, Changyi Zhu, Ari Krish, Mul-
jadi Sulistio, and Sun Keun Lee, which is hereby incorporated
by reference as if fully set forth.

This application is further related to the commonly co-
assigned U.S. patent application Ser. No. 10/026,663, xCBL
MAILBOX METHODS AND DEVICES filed on Dec. 18,
2001, by inventors Muljadi Sulistio, Yang Wei, Kelly Lane
Schwarzhoff, Yuan Ding, Sun Lee and Andy Yang, and the
following U.S. Patents, also based on applications filed on
Dec. 18, 2001: U.S. Pat. No. 7,058,886, METHOD AND
APPARATUS FOR DECLARATIVE ERROR HANDLING
AND PRESENTATION issued Jun. 6, 2006; and U.S. Pat.
No. 7,237,191, METHOD AND APPARATUS FOR
GENERIC SEARCH INTERFACE ACROSS DOCUMENT
TYPES issued Jun. 6, 2007; by inventors Muljadi Sulistio,
Yang Wei, Kelly Lane Schwarzhoff, Yuan Ding, Sun Lee and
Andy Yang; which are hereby incorporated by reference as if
fully set forth.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material, which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclosure
is it appears in the Patent and Trademark Office patent file or
records, but otherwise reserves all copyright rights whatso-
ever.

BACKGROUND OF THE INVENTION

Electronic commerce between businesses has gained sub-
stantial momentum. Electronic marketplaces and XML or
similar documents have begun to replace traditional EDI for-
mats for commerce-related documents. Still, many busi-
nesses, particularly small and medium-sized businesses, have

10

15

20

25

30

35

40

45

50

55

60

65

2

not adopted automated EDI or XML document processing.
Whatever their size, many businesses face the prospect of an
expedited implementation of EDI or XML document pro-
cessing. It remains easier for large trading partners to gener-
ate XML or similar documents than it is for small to medium-
sized businesses to adopt the technology needed to process
them. In addition, a full scale conversion to EDI or XML
transaction processing may involve far more documents than
a business can practically convert in a workable time frame or
on a reasonable budget.

One problem with the implementation of EDI or XML
transaction processing is the complexity and cost of proce-
dural programming to process business documents. Proce-
dural programming, otherwise known as hard coding,
requires much effort to describe document transformations
and manipulations in procedural terms, using programming
languages such as Java and C++. This effort translates into
time for implementation and cost of implementation.

In some domains or problem spaces, declarative program-
ming has been introduced. It is generally hoped that so-called
declarative programming can make program customization
accessible even to non-programmers. At the same time, it has
been recognized that declarative programming is best when
applied to a limited domain. Accordingly, declarative
approaches are narrow and tailored, not generally applied.

Therefore, in the domain of exchanging self-defining,
structured documents, it is desirable to develop declarative
methods and components for simplifying the handling of
documents. Declarative methods and components can
improve interactions with users, particularly in the areas of
producing documents, presenting error messages and search-
ing for documents.

SUMMARY OF THE INVENTION

The present invention includes a method and device for
updating a self-describing, structured document. A further
aspect of the present invention is enabling client-based modi-
fication of the document. Additional aspects of the present
invention are described in the claims, specification and draw-
ings.

BRIEF DESCRIPTION OF FIGURES

FIG. 1 is an overview of the user interface for an xCBL
mailbox.

FIG. 2 is a sample screen display of a folder list, as part of
a user interface.

FIG. 3 is a sample screen display for a list of documents
within a folder, as part of a user interface.

FIG. 4 is a sample screen display for a indicating a reply
document type.

FIG. 5 is the sample screen display for searching on a
selected document type, as part of a user interface.

FIG. 61is ablock diagram of activities involving two trading
partners communicating through a document exchange sys-
tem.

FIG. 7 is an application flow providing additional detail of
activities involving two trading partners communicating
through a document exchange system.

FIG. 8 is a block diagram of a self-describing, structured
document.

FIG. 9 illustrates participants in a marketplace.

FIG. 10 is a database schema for a data structure that may
be used to practice aspects of the present invention.

FIG. 11 is one architecture for software components that
handle generic documents.

US 9,135,226 B2

3

FIG. 12 is a user interface and processing diagram, includ-
ing validation of user created documents.

FIG. 13 isa user interface for replying to a request for quote
with a quote.

FIG. 14 is an action sequence for replying to a document.

FIG. 15 is a sequence diagram illustrating use of a servlet
to control responses to a user action request.

FIG. 16 is a sequence diagram illustrating interaction
between a servlet, interpreter and data structure engine, in
response to data from a user.

FIG. 17 is a block diagram illustrating posting of data and
some of the components involved in responding.

FIG. 18 is a simplified flow chart for a method of updating
a self-describing, structured document.

FIG. 19 illustrates a protocol for updating a self-describ-
ing, structured document corresponding to one of a plurality
of document schemas.

FIG. 20 is a flowchart overview of validation.

FIG. 21 is a flowchart overview of a method of searching a
plurality of self-describing structure documents.

FIG. 22 a flowchart overview of preparing documents for
searching.

FIGS. 23-26A-B illustrate data tables used to prepare
documents for searching.

DETAILED DESCRIPTION

The following detailed description is made with reference
to the figures. Preferred and alternative embodiments are
described to illustrate the present invention, not to limit its
scope, which is defined by the claims. Those of ordinary skill
in the art will recognize a variety of equivalent variations on
the description that follows.

FIG. 1 depicts a user interface view of a system for han-
dling generic business documents exchanged among trading
partners. This illustrates an environment in which aspects of
the present invention may be practiced. A user of a document
exchange system uses a computer, terminal or other worksta-
tion to access a login screen 111. Standard login and authen-
tication protocols can be followed. After a successful login, a
user is presented with an initial mailbox screen 112. FIG. 2
depicts a sample initial screen. The user’s choices from the
initial screen may include folder management 121, document
searching 122, listing of documents in the selected folder 123
or selection of a particular document type of interest 124.
Some of these options may be omitted or others may be added
to a system. The folder management screen 121 provides
typical functions for creating, deleting, renaming folders, etc.
The document search screen 122 allows a user to select a
document type and search on various criteria that are adapted
to the selected document type. FIG. 5 depicts a sample search
screen. The list of documents in a folder screen 123 can be
reached from either the initial screen or from a document
search screen. It provides various information about docu-
ments in a folder, as shown in FIG. 3. The document type
selection screen 124 can be implemented to allow a user to
create a document from scratch. When a user selects a par-
ticular type of document to compose, the system can respond
with a document compose screen 134 that includes the fields
to be completed.

From the list of documents in a folder screen, the user can
export a document 131, read it 132, or use it as a basis for a
new document 133, either by replying to or copying the base
document. The document may be exported as an XML, PDF,
CSV, HTML or other-formatted document. Standard or user-
supplied export filters can be implemented.

10

15

20

25

30

35

40

45

50

55

60

65

4

The processing of a user request to view a document can be
understood by reference to the co-pending application for A
Method and Apparatus for Viewing Electronic Commerce-
Related Documents at pp. 5-52 and the figures cited therein.
In general, a series of style sheets can be constructed for
displaying documents. These style sheets may be written in
XSLT, or another transformation language applicable to the
data type of the documents. A series of style sheets may be
written, from generic to highly customized. A rule selector
can be used to select among the available style sheets based on
criteria such as document type, marketplace identity, sender
identity, receiver identity, portal identity or other selected
criteria. A directory tree, database or other data structure can
be used to access style sheets based upon the criteria used.

A user can select among document types for a resulting
reply document 133. The available document types for a
resulting reply document depend on the document type of the
starting document type, for instance a starting document
selected from a list of documents 123. FIG. 4 is a sample
screen from which a user selects a document type 442 for a
resulting reply document. The reply document type can be the
same as the starting type, for instance when a user is copying
and reusing a previous order as a template. The trading part-
ner 443 may be identified by a full name, a short name and/or
a unique identifier string.

FIG. 2 provides additional details of the folder manage-
ment screen. The user is presented with standard screen func-
tionality such as home, help and log off 211. The current user
and user organization are presented in the header 212. This is
helpful for users who may belong to more than one organi-
zation. Options for accessing additional screens, such as the
in box, composing a document, searching, addressee’s and
folders are presented. For FIG. 2, the active option is folders.
Several columns of information about folders are provided,
including folder name 222, number of documents in a folder
223 and number of unread documents in the folder 224.
Additional columns of information can be provided.

FIG. 3 provides additional details of the file list screen.
General aspects of the screen follow the format of other
screens, e.g. 211, 212, 221. The current folder being viewed
and other folders available for view can be listed in the navi-
gation box 331. The checkboxes 332 are provided for select-
ing individual documents to delete or to move to a folder. A
column identifying the trading partners from whom docu-
ments originated 333 is provided. Date and time information
and document types also are provided 334, 335. Icons for the
document also can be provided 336. From the envelope icon,
the user will know if the document has been read or not and
also may know ifithas been forwarded or replied to. From the
export icon, the user can export the document. The same
functionality can be provided for exporting a series of docu-
ments that have been checked. From the clip icon, the user can
know if there are attachments associated with the document.
The clip icon may allow direct access to a list of attachments
or to the attachments themselves.

The document type selection screen of FIG. 4 can lead to
either a search or a reply action, depending on the context. In
FIG. 4, a trading partner name and document type may be
described in the banner 441, if they have been selected. Selec-
tion of a document type provides a context for either search-
ing or replying. FIG. 5 depicts a sample search screen that
includes many of the same features as other sample screens,
e.g., 211,212,221, and 331. One or more field selection filters
512, 513 are supplied. The values accessible by the pull down
menus of these filters are context sensitive to a selected docu-
ment type, if the document type is selected by a filter 518 or
has been selected by context in a prior screen. Only the field

US 9,135,226 B2

5

types that are valid for a particular document type appear in
the pull down menu, once a document type has been selected.
One or more value specification fields 514 also are provided.
These value specification fields are context sensitive to the
document fields. The user’s entry can be checked for format
and data type as the user enters the data. The combination of
field selection filters and value specification fields, context
sensitive to the document type selected, enables a generic
interface for searching across different document types. In
addition to generic field handling, additional filters can be
provided to search by date 515, document status 516, trading
partner 517 or other field. A variety of interfaces can be used
to implement these filters, such as pull down menus, radio
buttons, checkboxes, or blanks to fill in. A list of folders to
search in 519 can be dynamically generated, to match the list
of folders in the navigation box 221, 331.

FIG. 6 is a block diagram, at a very high level, depicting
flow through activities related to exchange of documents
between trading partners. A trading partner 601 using a con-
nector sends a business document to a document router 606,
which routes the document to a generic document handling
service 609 within a service environment 608. The generic
document handling service does some processing and,
assuming no fatal error, stores the document inside database
607. Later, another trading partner 602 using a browser or
other software adapted to communicate with the market site
603 accesses the Web server 604 running a document access
servlet 605. The trading partner reads the document and,
optionally, creates a response or uses the document as a basis
for creating a new document. The second trading partner can
access and create generic documents using a standard Web
browser or other software. The servlet retrieves the starting
document from the database 607. After a response or new
document is created, the document can be sent to another
trading partner 601. All of the functions of the market site 603
can be hosted on a single server. In some implementations, it
is desirable to have separate servers for the router 606, the
services 608, the database 607 and the Web servers 604.
Additional servers or families of servers may be added for
load balancing, high availability and/or security reasons.

FIG. 7 is a block diagram depicting an alternative system.
Interacting with the system are an entity 701 which sends a
document to the system and a user 702 who interacts with the
document stored by the system. The entity sends the docu-
ment to a server 708 via router and communication channels
that are not depicted in the figure. The document may reach
the server 708 based on the addressee of the document or a
combination of addressee and document type, or it may be
sent directly to a location specified by the sender. For
instance, a global directory may be published that identifies
locations to which participants in a marketplace desire for
various types of documents to be sent. The locations may be
specified in the form of market participant IDs or URLs. A
market participant may have multiple IDs or URLs.

A document being sent is typically a self-describing, struc-
tured document. XML documents are a common type of
self-describing, structured documents. Fields within this
document are self-describing, as the fields are tagged. A
sample document having two different types of tagged fields
is illustrated in FIG. 8. The document 800 may have one or
more parts 830, 840. For instance, the document may include
a MIME header and an XML body. A MIME header may be
compliant with RFC 822. The header 830 includes a plurality
of tagged fields 831-833. The body 840 also includes a plu-
rality of tagged fields 841-849. Alternatively, the document
may have only one part or one type of tagged fields. These
tagged fields may comply with a schema, such as an xCBL

10

15

20

25

30

35

40

45

50

55

60

65

6

schema by Commerce One or a CXML schema by Areba. A
scheme is characterized by tagged fields having types and
super types. Types inherit properties from the super types on
which they are based. Types are defined based on their super
types and having additional properties. Other standards to
which tagged fields may comply include Sox by Commerce
One, ECX, the OAGI standard of Open Applications.org, the
BizTalk standard by Microsoft, the Rosetta net standard by
Rosetta Net.org, and EDI X12 A32.

Referring to FIG. 7, the entity which sent a document to the
system 701 may be an electronic trading partner or otherwise
an electronic correspondent of the entity to which user 702
belongs. The relationship of trading partners or electronic
correspondence is illustrated in FIG. 9. The trading partners
participate in the trading network 900. This network may be
hosted by a single entity or it may be a collaboration of
networks hosted by distinct entities. The trading partners may
both use the same host or they may use different hosts which
route messages among themselves. Two trading partners 860,
880 are illustrated. Participants on behalf of the trading part-
ners 861, 381 may be systems or human beings. Referring
again to FIG. 7, the entity 701 which sends the document to
the server 708 may be either a system or a human being.
Purchasing systems are examples of entities which generate
self-describing, structured, tagged field documents and send
them to systems.

On server 708, one or more services 711-713 may be avail-
able. One service may receive the document 711. The same or
another service 712 may persistently store the incoming
document, for instance in a database 707. One or more data-
bases may be used to store data useful for electronic com-
merce or other document exchange. A database may include
a repository of schemas 741 for standard and entity-defined
business documents, a repository of JavaBeans 742, C++
structures, Pascal records or scripts useful to electronic com-
merce, a document map repository 743 for translation of
documents from one format to another (e.g., the xCBL format
to an export format) and for transformation of documents
from one type to another (e.g., from a request for quotation to
a quotation.) The database may further include a report layout
repository 744 and a presentation layout repository 745. The
presentation layout repository may include declarative trans-
formations for changing documents from a Sox document
format to an HTML format, and back again. The transmission
properties data describes the transport information needed to
sent a business document to a recipient. For example, SSL.
security credentials can be stored as transmission properties.
A trading partner directory is also useful. The trading partner
directory may, as described above, identify URLs to which
the sending entity 701 transmits documents. The persistent
storage for data 707, 741-47 may be on a single data storage
unit or multiple units. Persistent document storage need not
be part of a database. An indexed flat file would suffice to store
XML-compliant documents. The services host 708 may also
host an indexing service to index one or more of the tagged
fields. Alternatively, a database system managing the persis-
tent storage or other subsystem may index documents for
retrieval. An incoming document may or may not be validated
against schema from a schema repository 741, before it is
persistently stored. A schema may be used to interpret the
document. One or more JavaBeans or Scripps may be used to
act on the document before it is stored.

One schema for persistently stored documents is illustrated
in FIG. 10. In this schema, a document and its header are
captured in structure 1020. If this document is a copy or a
reply based on an original document, the original document is
stored in structure 1023. A copy or a reply document is

US 9,135,226 B2

7

associated with a special folder 1024. Document attachments
are captured in structure 1040. Sets of valid document types
and document statuses are maintained in structures 1010 and
1030, respectively. The one-to-many connections between
structures 1010, 1030 and structure 1020 indicate that only
one document type and one document status are allowed per
document. To support searching, searchable fields are listed
in a data structure 1012, and may be assigned unique or
non-unique alias names. Information regarding searchable
fields is listed in a separate data structure 1022. Other data
arrangements may equally well practice aspects of the present
invention.

Persistent storage of the incoming document may be
accompanied by various processing steps. The original docu-
ment, prior to normalizing, may be stored in a database.
Envelope properties may be extracted from the envelope and
normalized in a database or other storage. A predefined list of
indexed fields, by document type, may be consulted and those
fields indexed. Generic document properties, such as date and
status, may be extracted from the envelope. The envelope
itself may be separately stored. Attachments may be sepa-
rately stored. Unneeded white space may be removed and
name space abbreviations used to reduce storage require-
ments.

Returning to FIG. 7, the service 713 may advise the user
702 of receipt of the document by messaging, posting any
other practical means. One or more users may be given notice,
based on the identity of the sending entity, the identity of the
receiving entity, the document type or other characteristics of
the document. One syntax for subscription by a user is
subscription=sender ID.recipient ID.document type. To
receive all Order documents from a particular sending entity,
a user could subscribe as follows:
subscription=S1234.*.Order. This subscription would cause
service 713 to notify user 702 of receipt of order type docu-
ments from sending entity S1234. Security features of the
system would, of course, restrict access appropriately. Notice
may be given by messaging, such as e-mail or Lotus Notes
messaging. A message may include a subject, such as, “five
new documents received,” header text generally stating that
new documents have been received or that old documents
remain to be viewed. The e-mail may further include body
text providing the date, number and sending party’s identities
for documents received. The body text may further provide
detail regarding individual documents received, such as the
document type, sender identity and date or time of receipt.
The user interface may identify the location for viewing the
document, such as by a click through URL. Alternatively,
notice may be given by posting at a location to which the user
has access. A combination of notice formats may be used,
such as posting followed by e-mail follow-up in the user does
not promptly access listed documents. E-mails based on the
status of accessing a document or a post notice may be sent
periodically and may include increasingly strong wording or
additional addresses, based on the type and/or aging of the
received document.

A system 704 may be based upon a web server and a servlet
container, for instance, compatible with JRun 3. A user inter-
face application 721 may include a homepage 721, an in box
722, one or more services to read the document and/or its
attachments 723, services for folder management 724, cus-
tomized folders 725, searching for and listing documents. An
additional service may provide access for downloading tem-
plate documents 728. The web server may include
Microsoft’s WebServer software, a Java interpreter such as
JRun 3 and a servlet container. A data storage interface may
use the resources of a database. A first collection of services

10

15

20

25

30

35

40

45

50

55

60

65

8

720 is illustrated as being coupled with a transformation
engine 730. The transformation engine may include selection
logic 732 to select the style sheet for transformation purposes
and transformation logic 731 which applies a style sheet to a
document.

FIG. 11 depicts a further alternative environment in which
aspects of the present invention can be practiced, similar to
the environments depicted in FIGS. 6 and 7. A web server
1111 takes HTTP requests and makes HTTP responses. A
generic document handling facility takes advantage of the
web server resources through a program interface. One useful
API is Sun Microsystems Java servlet. The so-called servlet
technology provides a simple, consistent mechanism for pro-
viding access to web server services. A servlet written in Java
can provide a component-based, platform-independent
method for building Web-based applications. A single servlet
application may be integrated with a variety of web-enabled
application servers such as BEA WebLogic Application
Server, IBM WebSphere, iPlanet Application Server others.
Complementary to servlet technology is Java Server Pages
(JSP) support 1114. The JSP technology is an extension of
servlet technology that supports authoring of HTML and
XML pages. JSP facilitates mixing dynamic content with
static templates. JSP supports encapsulation of logic to gen-
erate content dynamically. The dynamic content logic can be
accessed from the template page. The servlet runner 1112
resident on the web server may be JRun or a similar Java
environment. Alternatively, a different program interface to
the web server may be used with a different programming
language. The servlet runner supports the servlet interface for
access to the web server. The servlet runner supports the
servlet controller 1113, invocation of JSP pages 1114, and a
variety of applications 1121-26. Among these applications,
the data access layer is an abstraction layer for access to the
database 1151. The data access layer is present on each server
or in each application environment that accesses the database
1133, 1144. XML Pres 1122 is a style sheet engine that
handles extended XSLT style sheets for transformation of
XML into HTML. The rule selector 1123, as described in the
co-pending application, provides access to default or a cus-
tomized rules and templates that match parameter such as
document type and trading partner. The XML engine parses
and processes XML documents. For XML, records can be
parsed and processed using DOM, SAX or any other pro-
gramming model. Folder management is provided 1125.
Software and resources for processing browser forms with
embedded pass specifications are also provided 1126, as
described further below. E-mail notification 1131 may be
structured with an e-mail module 1132, a data access layer
1133, and e-mail management routines. The e-mail module
will utilize routines of the data access layer and the e-mail
management library. Sun Microsystems provides a library of
e-mail management routines complementary to its servlet
technology. The overall generic document exchange service
1141 can be hosted within a services environment 1142. The
generic document exchange service 1143 may include logic
in resources for data access 1144, XML transformation is
1145 and XML searching and processing 1146. Data
accessed and utilized by these routines may be stored in
multiple databases 1151, 1152. A database of documents may
be one component and market site data may be another, the
market site data including a directory compliant with a light-
weight directory access protocol.

FIG. 12 is a block diagram of a user interface and declara-
tive data. This figure provides additional detail beyond the
detail of FIG. 1. The initial three screens, for displaying a
document 132, selecting a document type 133, and compos-

US 9,135,226 B2

9

ing a reply or new document 141 are the same as in FIG. 1.
FIG. 12 depicts the use of declarative data for a mapping
selector 1231, for data transformation mapping 1211, and for
display transformation 1212 in conjunction with the docu-
ment type selection screen 133. The mapping selector 1231
provides a list of document types that can be produced from a
selected starting document is accessed and incorporated in
the user interface. The types of resulting documents that can
be produced may depend on the marketplace, trading partner
and other factors, as well as the document type of the starting
document. From a starting document and selection of a docu-
ment type for a resulting document, data transformation map-
ping 1211 is applied to generate a draft resulting document
from the starting document. The transformation mapping
should ensure that the resulting document is well formed,
when the starting document is well formed. For XML to XML
transformation, the declarative transformation mapping may
take the form of an XSLT style sheet, potentially with exten-
sions to XSLT. Other forms of declarative schema-to-schema
mapping may also be used. Display transformation mapping
utilizes declarative display format data 1121 to transform the
underlying data for use in the user interface, for instance, to
transform XML to HTML they can be viewed by a browser.
Following document type selection 133, application of
declarative data from a mapping selector, data transformation
mapping, and display transformation mapping is used to pro-
duce a document updates screen 141. In one embodiment,
application of one or more declarative transformations to the
starting document produces a user interface form. The user
interface form includes a plurality of path specifications for
fields corresponding to the document type of the resulting
document, starting values based on the starting document for
at least some of the fields in the resulting document, and
values to be completed for other fields in the resulting docu-
ment. Field labels also may be included, either as data or
along with other page formatting information. Alternatively,
all of the fields may be populated and none left to be com-
pleted. Some fields may be editable and others not editable.
The path specifications may conveniently be implemented as
HTML hidden fields or otherwise as non-displaying fields.
They can be displayed, for instance, for debugging. XPath is
one convention that can be used for path specifications to
nodes or fields within an XML document. An alias for an
XPath path specification also may be used, in conjunction
with a lookup from the alias to the full path specification.
Aliases can double as field labels.

Sample excerpts of a document to display transformation
1212 for a main processing routine and display of header
information with embedded path specifications follows:

Default.xsl

<?xml version="1.0" ?>
- <xsl:style sheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform”
xmlns:ext="http://www.commerceone.com/xmlpres”
xmlns:cbl="urm:x-commerceone:

10

15

20

25

30

35

40

45

50

10

-continued

Default.xsl

document:com:commerceone: XCBL30:XCBL30.s0x$1.0”
xmlns:xm="http://www.commerceone.com/xcblmailbox™>
<xsl:include href="schematronerror.xsl” />
<xsl:include href="*header_ display.xsl” />
<xsl:include href="detail_ display.xsl” />
<xsl:include href="“summary_ display.xsl” />
<xsl:include href="Ir:Quote:Quote__variable.xs1$1.0” />
<xsl:decimal-format name="DEIT” decimal-separator="," grouping-
separator="" />
<xsl:decimal-format name=“FR” decimal-separator=",” grouping-
separator="" />
- <xsl:template match="/">
— <
This is for displaying Schematron errors
->
- <xsl:if test="string($xm:hasSchematron)="true>
<xsl:variable name="results” select="document(‘error:///
schematronConformance.xml”)” />
- <xsl:call-template name=“ErrorDisplayer”>
<xsl:with-param name=“confdoc” select="$results” />
<xsl:with-param name=*“idmap” select="$schematronmaps” />
</xsl:call-template>
<fxsl:if>
— <
If the xml instance has error, display error fields with
field validation error
->
- <xsl:choose>
- <xsl:when test="string($xm:hasError)="true’”>
<xsl:variable name="ErrorDocument”
select="document(‘error:///
inMemoryError’)” />
- <xsl:variable name="Prefixes”>
<empty />
</xsl:variable>
- <xsl:call-template name="DisplayHeader_ Error”>
<xsl:with-param name="Prefixes” select="$Prefixes” />
<xsl:with-param name="ErrorDocument”
select="$ErrorDocument™ />
<xsl:with-param name=“ErrorCodeMaps”
select="$codemaps™
/>
</xsl:call-template>
- <xsl:call-template name="DisplayDetail Error”>
<xsl:with-param name="Prefixes” select="$Prefixes” />
<xsl:with-param name="ErrorDocument”
select="$ErrorDocument™ />
<xsl:with-param name=“ErrorCodeMaps”
select="$codemaps™
/>
</xsl:call-template>
<xsl:call-template name="“DisplaySummary” />
</xsl:when>
— <
If the xml instance doesn’t contain error, display all
fields without any error
->
— <xsl:otherwise>
<xsl:call-template name=“DisplayHeader_ NoError” />
<xsl:call-template name=“DisplayDetail_ NoError” />
<xsl:call-template name="“DisplaySummary” />
</xsl:otherwise>
</xsl:choose>
</xsl:itemplate>
</xsl:style sheet>

Header display.xsl

<?xml version="1.0" encoding=“UTF-8” 7>
- <xsl:style sheet version="1.0"
xmlns:xsl=“http://www.w3.0rg/1999/XSL/Transform”
xmlns:ext="http://www.commerceone.com/xmlpres” xmlns:cbl="urn:x-
commerceone:
document:com:commerceone:XCBL30:XCBL30.s0x$1.0”

US 9,135,226 B2
11

-continued

12

Header display.xsl

xmlns:xm="http://www.commerceone.com/xcblmailbox™>
<xsl:include href="error.xsl” />
<xsl:include href="header_ party_ display.xsl” />
- <xsl:template name="DisplayHeader_ Error”>
_<)es
This is the prefix to namespace bindings used in the
location
-

<xsl:param name="Prefixes” />
_<es

This is the error document to retrieve errors from
>

<xsl:param name=“ErrorDocument” />
_<es

This is a result tree fragment that maps error codes
to localized descriptions
-
<xsl:param name="ErrorCodeMaps” />
- <TABLE cellpadding="1" cellspacing="0" border="0" width=*100%">
- <TR class="ListHeader>
- <TD align="left” colspan="2" class="ListHeaderText”>

<xsl:value-of select="$QuoteHeader” />
</TD>

</TR>
— <TR>
- <TD class="StatusHeaderSmallNew” width="50%"">
*
<xsl:value-of select="$QuoteRefNum” />
</TD>
- <TD class="StatusHeaderSmallNew” width="50%"">
*
<xsl:value-of select="$QuotelssueDate™ />

(
<xsl:value-of select="string($xm:DATETIMEMASK)” />

)
</TD>
</TR>
- <TR>
- <TD class=“ElementStyle” width="50%">

<xsl:variable name="xpath”>/Quote/QuoteHeader/QuoteID/
Reference/RefNum</xsl:variable>

<input type=“hidden” name="{concat(‘XPostChange:’, $xpath)}”
value="" />

<input class="FElementStyle” type="text”

name="“{concat(*XPostContent:’, $xpath)}” value="{cbl:Quote/
cbl:QuoteHeader/cbl:QuoteID/cbl:Reference/cbl:RefNum }

size="20"
onChange="javascript:setModified(‘{concat(‘*XPostChange:’,
$xpath)});” />

- <xsl:variable name="RefNumErrors™>
- <xsl:call-template name=“ErrorDetector”>
<xsl:with-param name="Location”
select="‘/Quote/QuoteHeader/QuoteID/Reference/RefNum™ />
<xsl:with-param name=*Prefixes” select="$Prefixes” />
<xsl:with-param name="ErrorDocument”
select="$ErrorDocument” />
<xsl:with-param name="ErrorCodeMaps™
select="$ErrorCodeMaps™ />
</xsl:call-template>
</xsl:variable>
- <xslif
test="string($ RefNumErrors)!=string($NotMapped Constant)”
>
-
[
<xsl:value-of select=“$Error” />
<xsl:value-of select="$RefNumErrors” />
1:
</span
<fxsl:if>
</TD>
- <TD class=“ElementStyle” width="50%">
<xsl:variable name="xpath”>/Quote/QuoteHeader/
QuotelssueDate</xsl:variable>
<input type="hidden” name="{concat(‘XPostChange:’, $xpath)}”
value="" />
- <xsl:variable name="DateErrors”>

US 9,135,226 B2
13 14

-continued

Header display.xsl

- <xsl:call-template name=“ErrorDetector”>
<xsl:with-param name="Location” select="‘/Quote/
QuoteHeader/QuotelssueDate’” />
<xsl:with-param name=*Prefixes” select="$Prefixes” />
<xsl:with-param name="ErrorDocument”
select="$ErrorDocument” />
<xsl:with-param name="ErrorCodeMaps™
select="$ErrorCodeMaps™ />
</xsl:call-template>
</xsl:variable>
<xsl:param name="“date” select="cbl:Quote/
cbl:QuoteHeader/cbl:QuotelssueDate” />
— <xsl:param name="QuotelssuedDate”>
<ce:lookup xmlns:ce="http://www.commerceone.com/xslt/
extensions” xmlns:maillookup="urn:mailbox:lookup”
mapname=“maillookup:DateTimeFormatter” value=*“$date”
errorvalue="‘Can not mapped’” />
</xsl:param>
- <xsl:choose>
- <xsl:when
test="string($ DateErrors)! =string($NotMappedConstant)’>
<input class="ElementStyle” type="text”
name="{concat(‘XPostContent:’, $xpath)}”
value="{cbl:Quote/
cbl:QuoteHeader/cbl:QuotelssueDate }” size="15"
onChange="javascript:setModified(‘{concat(*XPostChange:’,
$xpath)});” />
-
[
<xsl:value-of select="$Error” />
<xsl:value-of select="$DateErrors™ />
1:
</span:
</xsl:when>
- <xsl:otherwise>
<input class="ElementStyle” type="text”
name="{concat(‘XPostContent:’, $xpath)}”
value=“{$QuotelssuedDate }” size="15"
onChange="javascript:setModified(‘{concat(*XPostChange:’,
$xpath)});” />
</xsl:otherwise>
</xsl:choose>
</TD>
</TR>
<xsl:call-template name="“DisplayParty” />
</TABLE>

</xsl:template>
- <xsl:template name="DisplayHeader_ NoError”>
— <TABLE cellpadding="1" cellspacing="0" border="0" width="100%">
- <TR class="ListHeader”>
- <TD align="left” colspan="2" class=“ListHeaderText">
<xsl:value-of select="$QuoteHeader” />
</TD>
<TR>
— <TR>
- <TD class="StatusHeaderSmallNew” width="50%"">
*
<xsl:value-of select="$QuoteRefNum” />
</TD>
- <TD class="StatusHeaderSmallNew” width="50%"">
*
<xsl:value-of select="$QuotelssueDate™ />
(
<xsl:value-of select="string($xm:DATETIMEMASK)” />
)
</TD>
<TR>
- <TR>
- <TD class=“ElementStyle” width="50%">
<xsl:variable name="xpath”>/Quote/QuoteHeader/QuoteID/
Reference/RefNum=</xsl:variable>
<input type=“hidden” name="{concat(‘XPostChange:’, $xpath)}”
value="" />
<input class="FElementStyle” type="text”
name="“{concat(*XPostContent:’, $xpath)}” value="{cbl:Quote/

US 9,135,226 B2

15

-continued

16

Header display.xsl

cbl:QuoteHeader/cbl:QuoteID/cbl:Reference/cbl:RefNum}

size="20"

onChange="javascript:setModified(* {concat(*XPostChange:’,

$xpath)});” />

</TD>
- <TD class=“ElementStyle” width="50%">

<xsl:param name="“date” select="cbl:Quote/
cbl:QuoteHeader/cbl:QuotelssueDate” />

<xsl:variable name="“xpath”>/Quote/QuoteHeader/
QuotelssueDate</xsl:variable>

<input type=“hidden” name="{concat(‘XPostChange:’, $xpath)}”

value="" />
— <xsl:param name="QuotelssuedDate”>
<ce:lookup xmlns:ce=“http://www.commerceone.conv/xslt/
extensions” xmlns:maillookup="urn:mailbox:lookup”

mapname="“maillookup:DateTimeFormatter” value=*“$date”

errorvalue="‘Can not mapped”” />
</xsl:param>
<input class=“FlementStyle” type="text”
name="“{concat(*XPostContent:’, $xpath)}”
value="{$QuotelssuedDate }” size="15"
onChange="javascript:setModified(* { concat(*XPostChange:’,
$xpath)});” />
</TD>
</TR>
<xsl:call-template name="“DisplayParty” />

</TABLE>
</xsl:itemplate>
</xslstyle sheet>

A draft resulting document also may be generated, in the
process of producing the user form. This document may be
produced according to a declarative transformation of a start-
ing XML document into a draft resulting XML document.
The draft resulting document may include starting values
from the starting document. It also may include default values
for some fields and directions for completing other fields. The
draft resulting document may be stored in memory according
to a document-object-model (DOM) or another tree-based
representation. Alternatively, the draft resulting document
may be stored on disk or in memory ina form compatible with
Simple API for XML (SAX or SAX?2) or another event-based
access model. Or, an event-based API can be used to construct
a tree, or traverse an in-memory tree. When a draft resulting
document is generated, in addition to a form, the draft result-
ing document may be maintained in memory while the user
works from the form and a document ID can be maintained
with other state information for the draft resulting document.
Alternatively, a document 1D and related information can be
transmitted with the user form, even in a stateless fashion, and
the draft resulting document constructed after the user’s
updating of the form. A draft resulting document can be
transformed with a display transformation to generate the
user form. The display transformation may be generated with
an XSLT style sheet or another set of declarative data.

Sample excerpts of a document to document transforma-
tion 1211 from a request for quotation to quotation follows,
including portions of a main processing routine and a party
copy routine:

Default.xsl

- <xsl:style sheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform”
xmlns:ext="http://www.commerceone.com/xmlpres”

35

40

45

50

55

60

65

-continued

Default.xsl

xmins:cbl="urn:x-
commerceone:
document:com:commerceone: XCBL30:XCBL30.s0x$1.0”
xmlns:xm="http://www.commerceone.com/xcblmailbox™>
<xsl:output method="xml” indent="“yes” omit-xmldeclaration="“yes” />
<xsl:include href="reference__copy.xsl” />
<xsl:include href="“party_ copy.xsl” />
<xsl:include href=“lineitemnum__copy.xsl” />
<xsl:include href="itemidentifiers_ copy.xsl” />
<xsl:include href="identifier_ copy.xsl” />
<xsl:include href="totalquantity__copy.xsl” />
- <xsl:template match="/">
— <xsl:processing-instruction name="“soxtype”>
<xsl:text>urn:xcommerceone:
document:com:commerceone:XCBL30:XCBL30.-
sox$1.0</xsl:text>
</xsl:processing-instruction>
- <Quote>
<xsl:apply-templates select="cbl:RequestForQuotation/
cbl:RequestQuoteHeader” />
<xsl:apply-templates select="cbl:RequestForQuotation/
cbl:ListOfRequestQuoteDetails™ />
<xsl:apply-templates select="cbl:RequestForQuotation/
cbl:RequestQuoteSummary” />
</Quote>
</xsl:template>
- <xsl:template match="cbl:RequestQuoteHeader>
<xsl:call-template name="OutputQuoteHeader” />
</xsl:template>
- <xsl:template match="cbl:ListOfRequestQuoteDetails™>
<xsl:call-template name="OutputListOfQuoteDetails” />
</xsl:template>
- <xsl:template match="cbl:RequestQuoteSummary”>
<xsl:call-template name="“OutputQuoteSummary” />
</xsl:template>
- <xsl:template name="“OutputQuoteHeader”>
- <QuoteHeader>
<QuotelssueDate />
— <QuotelD>

US 9,135,226 B2

17

18

-continued -continued
Default.xsl Default.xsl
<xsl:apply-templates select="cbl:RequestQuoteID” /> </PaymentInstructions>
</QuoteID> 5 </QuoteTermsOfPayment™>
- <QuoteParty> </xsl:if>
<xsl:apply-templates select="cbl:RequestQuoteParty” /> </xsl:template>
</QuoteParty> - <xsl:template name=“OutputQuotePaymentTerms”>
<xsl:call-template name=“OutputQuoteCurrency” /> - <xsl:for-each
<xsl:call-template name=“OutputQuoteTermsOfPayment” /> select="cbl:RequestQuoteTermsOfPayment/
</QuoteHeader> 10 cbl:PaymentInstructions/
</xsl:template> cbl:PaymentTerms™>
- <xsl:template name="“OutputListOfQuoteDetails”> - <PaymentTerms>
- <ListOfQuoteDetails> - <xsl:for-each select="cbl:PaymentTerm”>
- <xsl:for-each select="cbl:RequestQuoteDetails”> - <PaymentTerm>
- <QuoteDetails™> <xsl:copy-of select="cbl:PaymentTermCoded” />
<xsl:call-template name="“OutputQuoteltemType” /> 15 <xsl:copy-of select="cbl:PaymentTermCodedOther” />
<xsl:call-template name=“OutputQuoteltemDetail” /> <xsl:copy-of select="cbl:PaymentTermValue” />
</QuoteDetails> <xsl:copy-of select="cbl:PaymentTermDetails” />
</xsl:for-each> </PaymentTerm>
</ListOfQuoteDetails> </xsl:for-each>
</xsl:template> </PaymentTerms>
- <xsl:template name="“OutputQuoteSummary’> 20 </xsl:for-each>
- <QuoteSummary> </xsl:template>
<xsl:copy-of select="cbl:TotalNumberOfLineltems” /> - <xsl:template name="“OutputQuotePaymentMethod”>
</QuoteSummary> - <xsl:for-each select="cbl:RequestQuoteTermsOfPayment/
</xsl:template> cbl:PaymentInstructions/cbl:PaymentMethod”>
- <xsl:template name="“OutputQuoteltemType”> - <PaymentMethod>
- <QuoteltemType> <xsl:copy-of select="cbl:PaymentMeanCoded” />
- <QuoteType> 25 <xsl:copy-of select="cbl:PaymentMeanCodedOther” />
<QuoteTypeCoded /> <xsl:copy-of select="cbl:PaymentMeanReference” />
</QuoteType> <xsl:copy-of select="cbl:PaymentSystemCoded” />
</QuoteltemType> <xsl:copy-of select="cbl:PaymentSystemCodedOther” />
</xsl:template> <xsl:copy-of select="cbl:OriginatingFIAccount” />
- <xsl:template name="“OutputQuoteltemDetail”> <xsl:copy-of select="cbl:ReceivingFIAccount” />
- <QuoteltemDetail> 30 <xsl:copy-of select="cbl:CardInfo” />
<xsl:apply-templates </PaymentMethod>
select="cbl:RequestQuoteltemDetail/ </xsl:for-each>
cbl:BaseltemDetail” /> </xsl:template>
</QuoteltemDetail> - <xsl:template match="cbl:RequestQuoteID”>
- <QuotePricingDetail> <xsl:call-template name=“CopyReference” />
- <PricingDetail> 35 </xsl:template>
- <ListOfPrice> - <xsl:template match="cbl:RequestQuoteParty”>
- <Price> - <OrderParty>
— <UnitPrice> - <BuyerParty>
<UnitPriceValue /> <xsl:apply-templates select="cbl:OrderParty/
- <UnitOfMeasurement> cbl:BuyerParty/cbl:Party” />
- o oy
i easuremen - <Seller!
</UnitPrice> <xsl:apply-templates select="cbl:OrderParty/
</Price> cbl:SellerParty/cbl:Party” />
</ListOfPrice> </SellerParty>
- <TotalValue> </OrderParty>
- <Monetary Value> 45 </xsl:template>
</§[Mm;etar\/y/?mc;unt > - <xsl:template match="cbl:Party”>
onetaryValue coa [l e« »
<TotalValue> <xsl:call-template name="CopyParty” />
o . </xsl:template>
</PricingDetail> </xslstvle sheet>
</QuotePricingDetail> xslistyle shee
</xsl:template>
- <xsl:template match="cbl:BaseltemDetail>> 50
<xsl:call-template name=“CopyLineltemNum” />
<xsl:call-template name=“CopyItemIdentifiers” />
<xsl:call-template name="CopyTotalQuantity™ /> Party copy.xsl
</xsl:template>
- <xsl:template name="OutputQuoteCurrency’> - <xsl:style sheet version="1.0"
- <xsl:if test="cbl:RequestQuoteCurrency/cbl:Currency/ 55 Xmlns:xsl=:http Swww.w3.01g/1999/XSL/ Transforr’l?”
cbl:CurrencyCoded™> 3(mlns:ext= ‘hitp://www.commerceone.com/xmlpres” xmlns:cbl=
— <QuoteCurrency> UIN X -COIMerceone:
<xslicopy-of select="cbl:RequestQuoteCurrency/ document:c‘?m:commerceone:XCBL30:XCBL30.SQX$1 9
cbl:Currency” /> xmins:xm="http://www.commerceone.com/xcblmailbox’>
</QuoteCurrency> - ixilliinyfiate name="CopyParty”>
</)_(Sl:lt> 60 <xsl:apply-templates select="cbl:PartyID” />
</xsltemplate> <xsl:call-template name=“CopyNameAddress” />
- <xsl:template name=“OutputQuoteTermsOfPayment”> </Party>
- <xsl:if test="cbl:RequestQuoteTermsOfPayment™> </xsl:template>
- <QuoteTermsOfPayment> - <xsl:template match="cbl:PartyID”>
- <PaymentInstructions> - <PartyID>
65

<xsl:call-template name="OutputQuotePaymentTerms” />

<xsl:call-template name="OutputQuotePaymentMethod” />

<xsl:apply-templates select="cbl:Identifier” />
</PartyID>

US 9,135,226 B2

19

-continued

Party copy.xsl

</xsl:template>

20
12, the flow branches from 141 depending on whether field
validation is error free. An error free field validation is dis-
played 1224 with a message. A document containing field
errors results in generation of an error document that is

_ <xslitemplate name="CopyNameAddress™> 5 merged for display with the original document by a declara-
<xsl:copy-of select="cbl:NameAddress” /> tive transformation 1212, thereby displaying validation errors
</xslitemplate> in the same user interface as the document being edited 1213.
</xslistyle sheet> The user’s actions may be iterative, to correct one or more
y)
errors before repeating field validation. The user may be
The user acts upon the form 141. Fields are added, com- 10 presented 1225 with further options of validating the docu-
pleted or changed. More than one iteration may be required, ment against business processing rules applicable to one or
for instance, if a user adds a line item to a quotation. When the more trading partners or of saving the document as a draft
user is ready, the form is posted to the server for validation. 1233. Alternatively, the multiple types of validations may be
One or more types of validation can be applied, such as field performed on the same document, without repeated user
validation against a schema (e.g., for well-formedness and 15 requests for validation. In one embodiment, business process-
valid ranges) and business processing validation against a ing rules are applied by a Schematron engine 1232.
rule base. For instance, a SOX-compliant xCBL schema and Excerpts from a sample of a user form 141 that produced
a set of Schematron rules can be used for validation. In FIG. the sample screen in FIG. 13 follow:
e start Mailbox20.jsp ---------------------- - >
<HTML>
<HEAD>

<TITLE>xCBL Mailbox 2.0</TITLE>
<LINK href="../css/main.css’ rel=STYLE SHEET type=text/css>

</HEAD>

<BODY bgColor=#{Tffff leftMargin=0 rightMargin=0 topMargin=0
MARGINWIDTH=“0" MARGINHEIGHT=0"">
<script language="javascript” src="../waiting.js”>

</script>

<script language="javascript” src="../displayhelp.js”>

</script>

S start 10go.jsp ---------m-mmmmmmmm oo >

<TABLE border=0 cellPadding=0 cellSpacing=0 width=*100%">

<TR>

<TD class=navigation colSpan=3 height=2><IMG height=1
sre="../img/spacer.gif’ width=1></TD></TR>

<TR>

<TD width="27%"></TD>
<TD noWrap width="*45%">

</script>

EEEY

L end logo.jsp >
<TABLE border=0 cellPadding=0 cellSpacing=0 width="*100%">
<TR class=topcell>
<TD height=18> </TD>
<TD height=18 align="right” class="HomeLink">

xCBL Mailbox </TD></TR>

</TABLE>

<TABLE align=center border=0 cellPadding=2 width="100%"><TBODY>

<TR>

<TD align=middle bgColor=#e9ecef vAlign=top width="20%">
e e start left_nav.jsp --------------------o---—- >
<TABLE border=0 cellPadding=2 cellSpacing=0 width="90%"><TBODY>

<TR>

<TD align=middle bgColor=#000000>
<TABLE border=0 cellPadding=0 cellSpacing=0 width=*100%"
class="LeftNav">>

<TR>

<TD colSpan=2><IMG border=0 height=3 src="../img/spacer.gif’
width =1 ></TD></TR>

<TR>

<TD align=middle> </TD>
<TD align=left class="BoldText”>

View Inbox</TD></TR>

EEEY

<TD colSpan=2><IMG border=0 height=3 src="../img/spacer.gif’
width =1 ></TD></TR>

<}

start folder_index.jsp -------------------- >

<FORM method=“POST” name=*folder_index’
action="XMServlet?webaction=Init’>

<TR>

<TD align=left vAlign=bottom> </TD>
<TD align=left class="BoldText”>

US 9,135,226 B2
21 22

-continued

Folders</TD></TR>
L 3
</TD></TR></TABLE></TD></TR>
<TR>
<TD align=left vAlign=bottom> </TD>
<TD vAlign=top>
<table cellpadding=0 cellspacing=0 border=0 class=“LeftNav”>

<TR>
<TD class="“SmallText”>
RollsR
oyce

</TD></TR></TABLE></TD></TR>
<INPUT name=*Folder_reload’ type=hidden value="FALSE” ></INPUT>
<INPUT name=*folder_empty_trash’ type=hidden value=“"FALSE” ></INPUT>
<INPUT name=*folder_previous_action’ type=hidden
value="unknown’></INPUT>
<INPUT name="Folder_current_folder’ type=hidden value="1"></INPUT>
<INPUT name="‘Folder_go_folder’ type=hidden value=‘1"></INPUT>

</FORM>

<! end folder_index,jsp —----------<-z-zz--= >
<script language="JavaScript”>

<)--

function emptyTrash() {
if(confirm(*Empty trash? *)) {
document.folder_index.folder_empty_trash.value =“TRUE”;
document.folder_index.action="XMServlet?webaction=FdrActionEmptyTrash”;
document.folder_index.Folder_go_folder.value =*4";
document.folder_index.submit();
¥

}
Jf-->

</script>
<TR>
<TD colSpan=2><IMG border=0 height=3 src="../img/spacer.gif’
width =1 ></TD></TR>
</TABLE></TD></TR>
</TABLE>

</TD>
<TD class=DisplayArea vAlign=top width="80%">
<!-- Begin MAIN CONTENT CELL -->
<FORM ACTION=“XMServlet?webaction=XMPrintAction” name="printdoc”
METHOD="post” target="_blank”>
<input type=“hidden” name="Docid”
value="XVeETjI6 Y 7IvT gK+MgDgZU0jgWzecmOux4p ThkFHOoPQ=">
</FORM>
<!-- Begin FORM -->
<FORM ACTION=“XMServlet” name="mainform” METHOD="post”>
<input type=“Hidden” name="BackType” value =*1">
<input type=“Hidden” name="Folder_requested_page” value="2">
<input type=“Hidden” name="Folder_go_folder” value="*1">
<input type=“Hidden” name=“Doclist.sort_by” value="1D">
<input type=“Hidden” name="BackToDocument” value="1">
<script language="JavaScript”>
closeWaitingWindow(‘process’);
<!--
function doXPostProcess(webaction, xpost, xpath, val)

document.mainform.webaction.value=webaction;
var fieldName = xpost + xpath;
document.mainform[fieldName].value = val;
document.mainform.submit();

)
function doRemoveltemLevel Attachment(webaction, xpost, xpath, val, attachuri)
{
document.mainform.webaction.value=webaction;
var fieldName = xpost + xpath;
document.mainform[fieldName].value = val;
document.mainform.AttUri.value=attachuri;
document.mainform.submit();

function doRemoveLineltem(webaction, xpost, xpath, val, lineitem)
document.mainform.webaction.value=webaction;
var fieldName = xpost + xpath;
document.mainform[fieldName].value = val;
document.mainform.RemoveLineltem.value=lineitem;

US 9,135,226 B2
23 24

-continued

document.mainform.submit();

function doXPostProcessWithDefault(webaction, xpost, xpath, val,
def fieldName, def val)
{
document.mainform.webaction.value=webaction;
var fieldName = xpost + xpath;
document.mainform[fieldName].value = val;
var DTnow = new Date();
document.mainform[def fieldName].value = def_val + “: + DTnow.getTime();
document.mainform.submit();

var isModified = false;

function setModified(xpost) {
isModified=true;
document.mainform[xpost].value = ‘true’;

function addNewAttachment(webaction, attachmentURI, xpath_val) {
document.mainform.webaction.value=webaction;
document.mainform.doclevelatt.value = “1”;
attachmentURI_fld = eval(“document.mainform.” + “XMAttachmentUri”);
attachmentURI_fld.value = attachmentURT;
fileNameXPath_fld = eval(“document.mainform.” + “FileNameXPath”);
fileNameXPath_fld.value = xpath_val;

function backToDocList()

if (document.mainform.BackType.value == “1”)
document.mainform.action = “XMServlet?webaction=FdrActionGetDocList™;
else if (document.mainform.BackType.value == “2”)
document.mainform.action = “XMServlet?webaction=XMSearchDoc”;
else
document.mainform.action =
“XMServlet?webaction=FdrActionRepliedDoc”;
document.mainform.submit();

function editNotes()
if (isModified)

if (tconfirm(*You have not save your changes, continue? *))
return;

document.mainform.webaction.value=“RREditNotesAction”;
document.mainform.submit();

function editAttachment()

document.mainform.webaction.value=“CRAttach Action”;
document.mainform.doclevelatt.value = “0”;
document.mainform.submit();
}
/>
</script>
<table width="100%" border="0" cellspacing="0" cellpadding="*1">
<tr class="Header”>
<td class="“HeaderText” align="left”>Draft</td>
<td class=“HeaderText” align="right”><a href=""
onclick="javascript:backToDocList(); return false;”>Back to list of
documents </td>
<ftr>
</table>

<input type=“hidden” name="webaction” value=" ">
<input type=“hidden” name="doclevelatt” value="0">
<input type=“hidden” name="XPostDocumentID”
value="XVeETjI6 Y 7IvT gK+MgDgZU0jgWzecmOux4p ThkFHOoPQ=">
<input type=“hidden” name="Docid”
value="XVeETjI6 Y 7IvT gK+MgDgZU0jgWzecmOux4p ThkFHOoPQ=">
<input type=“hidden” name="XMAttachmentUri” value=" ">
<input type=“hidden” name="AttUri” value=" ">
<input type=“hidden” name="FileNameXPath” value=" ">
<input type=“hidden” name="“RemoveLineltem” value=" ">
<!-- HEADER BAR -->
<table width="100%" border="0" cellspacing="0" cellpadding="2">
<tr class="Header”>
<td align="left” width="30%" nowrap class="HeaderText”>Reply
To: Rubicon </td>
<td align="right” nowrap width="30%" class=“ElementStyle”>

US 9,135,226 B2
25 26

-continued

<input type="“submit” name="Send” value="Send” class="ElementStyle”
onClick="document.mainform.webaction.value=‘CRSendAction’;
Jjavascript:openWaitingWindow(*XMServlet?webaction=XMDisplayProcessing’, pr
ocess’);javascript:document. mainform.submit(); return false;”>
<input type="“submit” name="Save” value="Save as Draft”
class=“ElementStyle”
onClick="document.mainform.webaction.value=‘CRSaveAction’;
Jjavascript:openWaitingWindow(*XMServlet?webaction=XMDisplayProcessing’, pr
ocess’);javascript:document. mainform.submit(); return false;”>
<input type="“submit” name="Validate” value="Validate”
class=“ElementStyle”
onClick="document.mainform.webaction.value=‘CRValidate Action’;
Jjavascript:openWaitingWindow(*XMServlet?webaction=XMDisplayProcessing’, pr
ocess’);javascript:document. mainform.submit(); return false;”>
<input type="reset” name="Reset” value="Reset” class="ElementStyle”>
</td>
<ftr>
</table>
<table width="100%" border="0" cellspacing="0" cellpadding="2">
<tr class="Header”>
<td align="left” nowrap class=“HeaderText”>Quote</td>
<td align="right” nowrap class="HeaderText”>
<a href="" onclick="javascript:editNotes(); return false”
onMouseOver="status="Edit document notes’; return true;”
onMouseOQut="status="; return false;”>
<img src="../img/icon_notes.gif” width="15" height="15"
border="0">
<a href=" " onclick="document.printdoc.submit(); return false”
onMouseOver="status="Print document’; return true;” onMouseOut="status=";
return false;”>
<img src="../img/icon_print.gif” width="15" height=*15"
border="0">
Add/Edit
Attachments</td>
<ftr>
</table>

<table width="100%" border="0" cellspacing="0" cellpadding="“0">
<tr>
<!-- MAIN document area -->
<td colspan="2">
<Frame>
<?xml version="1.0" encoding="UTF-8"?>
<TABLE xmlns:cbl="urn:x-
commerceone:document:com:commerceone: XCBL30:XCBL30.s0x$1.0”
xmlns:xm="http://www.commerceone.com/xcblmailbox”
xmlns:ext="http://www.commerceone.com/xmlpres” width="<100%" border="0"
cellspacing="0" cellpadding="1"><TR class="ListHeader”><TD
class="“ListHeaderText” colspan="2" align="left”>Quote
Header:</TD></TR><TR><TD width="50%"
class="StatusHeaderSmalINew">*Quote#:</TD><TD width="50%"
class="StatusHeaderSmal|New”>*Quote
IssueDate:
(Please Input as MM/dd/yyyy)
</TD></TR><TR><TD width="*50%" class=“ElementStyle”><input value=""
name="XPostChange:/Quote/QuoteHeader/Quote]D/Reference/RefNum™
type="“hidden”/><input
onChange="javascript:setModified(*XPostChange:/Quote/QuoteHeader/QuoteID/
Reference/RefNum’);” size="20" value=“PC-009”
name="XPostContent:/Quote/QuoteHeader/Quote]D/Reference/RefNum”
type="“text” class="ElementStyle”/></TD><TD width="*50%"
class=“ElementStyle”><input value=""
name="XPostChange:/Quote/QuoteHeader/QuotelssueDate”
type="“hidden”/><input
onChange="javascript:setModified (‘X PostChange:/Quote/QuoteHeader/Quotelss
ueDate’);” size=*15" value=""
name="XPostContent:/Quote/QuoteHeader/QuotelssueDate” type="text”
class=“ElementStyle”/></TD></TR><TR class="ListRowAlternate”><TD
class="StatusHeaderNew” width="50%" align="left”’>Quote Sent to Buyer:ABB-
1010</TD><TD class="StatusHeaderNew” width="50%" align="left”>From
Seller:ABB-1010</TD></TR><TR><TD class=“BodyText”>ABB Cornerstone
Company</TD><TD class=“BodyText”>ABB Cornerstone
Company</TD></TR><TR><TD class=“BodyText”>45 Terrance Blvd.</TD><TD
class=“BodyText”>45 Terrance Blvd.</TD></TR><TR><TD
class=“BodyText”>7th Floor</TD><TD class="BodyText">7th
Floor</TD></TR><TR><TD class="BodyText”>Auction Department</TD><TD
class=“BodyText”>Auction Department</TD></TR><TR><TD
class=“BodyText”>Angelville,

US 9,135,226 B2
27 28

-continued

USCA96660</TD><TD class="BodyText">Angelville,
USCA96660</TD></TR><TR><TD class="BodyText”>US</TD><TD
class=“BodyText”>US</TD></TR><img width="1" height="5" alt=""
sre="../img/spacer.gif”’/>
</TABLE><TABLE xmlns:cbl="urn:x-
commerceone:document:com:commerceone: XCBL30:XCBL30.s0x$1.0”
xmlns:xm="http://www.commerceone.com/xcblmailbox”
xmlns:ext="http://www.commerceone.com/xmlpres” width="<100%" border="0"
cellspacing="0" cellpadding="0"><TR class="ListHeader”><TD
class="“ListHeaderText” align="left”>Quote Detail:</TD><TD
class=“ListHeaderText” align="right” colspan="4"><input value=
name="XPostAddInto:/Quote/ListOfQuoteDetails” type=“hidden”/><a
onMouseOQut="status="; return false;” onMouseOver="status="Add New Line
Item’; return true;” onClick="doXPostProcess(‘CRSaveAction’, ‘XPostAddInto:’,
/Quote/ListOfQuoteDetails’, ‘QuoteDetails’); return false;”
href="#QuoteDetail_LineltemLabelnew”>[Add Line Item] </TD></TR><TR
bgeolor="#000000”><TD height="1" colspan="5"><img width="*1" height="1"
alt="" src="../img/spacer.gif”/></TD></TR><TR><TD height="3"
colspan="5"><img width="1" height="3" alt=""
sre="../img/spacergif’/></TD></TR><TR class=“ListRow3”><TD
class="StatusHeaderSmallNew” align="left”>Quote Item Detail 1</TD><TD
class=“ListRowAlternateText” align="right” colspan="4"><input value=""
name="XPostRemove:/Quote/ListOfQuoteDetails/QuoteDetails[1]”
type="“hidden”/><a onMouseOut="status="; return false;”
onMouseOver="status=‘Remove Line Item’; return true;”
onClick="doRemoveLineltem(‘CRRemoveLineltemAction’, “XPostRemove:’,
‘/Quote/ListOfQuoteDetails/QuoteDetails[1]°, ‘true’, ‘Lineltem1’); return false;”
href="#QuoteDetail_LineltemLabelnew”>[Remove Line

Ttem] </TD></TR><TR><TD class="StatusHeaderSmallNew” colspan="5"
align="left”>*Quote
Type</TD></TR><TR><TD class="ElementStyle” colspan="5" align="left”><input
value=""
name="XPostChange:/Quote/ListOfQuoteDetails/QuoteDetails[1]/Quoteltem Type
/QuoteType/QuoteTypeCoded” type="hidden”/><SELECT
onChange="javascript:setModified ("X PostChange:/Quote/ListOfQuoteDetails/Quo
teDetails[1]/Quoteltem Type/QuoteType/QuoteTypeCoded’);” height="10"
name="XPostContent:/Quote/ListOfQuoteDetails/QuoteDetails[1]/Quoteltem Type
/QuoteType/QuoteTypeCoded”><OPTION VALUE= SELECTED >

<OPTION VALUE=Accept > Accept

<OPTION VALUE=AcceptWithChanges > Accept With Changes

<OPTION VALUE=AlternateBid > Alternate Bid

<OPTION VALUE=BestAndFinal > Best And Final

<OPTION VALUE=BidWithoutException > Bid Without Exception

<OPTION VALUE=Other > Custom Code

<OPTION VALUE=Decline > Decline

<OPTION VALUE=Declined ToQuote > Declined To Quote

<OPTION VALUE=RequestForTimeExtension > Request For Time Extension
<OPTION VALUE=UnableToQuote > Unable To Quote
</SELECT></TD></TR><TR><TD class="StatusHeaderSmalINew”
valign="bottom” align="left”>*Item</TD><TD class="StatusHeaderSmallNew”
valign="bottom” align="left”>Part#</TD><TD class="StatusHeaderSmallNew”
width="30%" valign="bottom” align="left”>Description</TD><TD
class="StatusHeaderSmallNew” valign="bottom” align="left”>Qty</TD><TD
class="StatusHeaderSmallNew” valign="bottom”
align="left”>U/M</TD></TR><TR><TD class="BodyText” valign="top”
align="left”><input value=""
name="XPostChange:/Quote/ListOfQuoteDetails/QuoteDetails[1]/QuoteltemDeta
il/LineltemNum/BuyerLineltemNum” type="“hidden”/><input
onChange="javascript:setModified ("X PostChange:/Quote/ListOfQuoteDetails/Quo
teDetails[1]/QuoteltemDetail/LineltemNum/BuyerLineltemNum’);”
maxlength="11" size="5" value="1"
name="XPostContent:/Quote/ListOfQuoteDetails/QuoteDetails[1]/QuoteltemDeta
il/LineltemNum/BuyerLineltemNum” type=“text”/></TD><TD class="BodyText”
valign="top” align="left”>T-77-0-0-56</TD><TD class="BodyText” valign="“top”
align="left” width="30%"/><TD class=“BodyText” valign="top”
align="left”>6000000.00</TD><TD class="BodyText” valign="top™
align="left”>EA</TD></TR><TR class="ListRowAlternate”><TD
class="StatusHeaderSmallNew” colspan="5" align="left”>To Be Completed by
Offeror:</TD></TR><TR class="ListRowAlternate”><TD colspan=“5"><TABLE
border="0" cellpadding="“0" cellspacing="1" width="100%"><TR><TD
class="StatusHeaderSmallNew” valign="bottom” align="left”>*Unit Price:</TD><TD
class="StatusHeaderSmallNew” valign="bottom” align="left”>*U/M:</TD><TD class="StatusHeaderSmallNew”
valign="bottom” align="left”>*Total
Price:</TD></TR><TR><TD valign="top” align="left”><input value=""
name="XPostChange:/Quote/ListOfQuoteDetails/QuoteDetails[1]/QuotePricingD
etail/PricingDetail/ListOfPrice/Price[1])/UnitPrice/UnitPriceValue”

PTEs)

US 9,135,226 B2
29

-continued

type="“hidden”/><input
onChange="javascript:setModified ("X PostChange:/Quote/ListOfQuoteDetails/Quo
teDetails[1]/QuotePricingDetail/PricingDetail/ListOfPrice/Price[1]/UnitPrice/UnitPri
ceValue’);” maxlength="28" size="15" value=""
name="XPostContent:/Quote/ListOfQuoteDetails/QuoteDetails[1]/QuotePricingD
etail/PricingDetail/ListOfPrice/Price[1])/UnitPrice/UnitPriceValue” type="text”
class=“ElementStyle”/></TD><TD valign="top” align="left"><input value=" "
name="XPostChange:/Quote/ListOfQuoteDetails/QuoteDetails[1]/QuotePricingD
etail/PricingDetail/ListOfPrice/Price[1])/UnitPrice/UnitOfMeasurement/UOMCoded
” type="hidden”/><SELECT
onChange="javascript:setModified ("X PostChange:/Quote/ListOfQuoteDetails/Quo
teDetails[1]/QuotePricingDetail/PricingDetail/ListOfPrice/Price[1]/UnitPrice/UnitOf
Measurement/UOMCoded’);” height=*10"
name="XPostContent:/Quote/ListOfQuoteDetails/QuoteDetails[1]/QuotePricingD
etail/PricingDetail/ListOfPrice/Price[1])/UnitPrice/UnitOfMeasurement/UOMCoded
”><OPTION VALUE= SELECTED >
<OPTION VALUE=FC > 1000 Cubic Feet
<OPTION VALUE=MQ > 1000 Meters
<OPTION VALUE=KS > 1000 Pounds Per Square Inch
<OPTION VALUE=BP > 100 Board Feet
<OPTION VALUE=KK > 100 Kilograms
<OPTION VALUE=YL > 100 Lineal Yards

L 3
<OPTION VALUE=B22 > Kiloampere
<OPTION VALUE=TAH > Kiloampere Hour Or Thousand Ampere Hour
<OPTION VALUE=B24 > Kiloampere Per Metre
<OPTION VALUE=B23 > Kiloampere Per Square Metre
<OPTION VALUE=KBA > Kilobar
<OPTION VALUE=2Q > Kilobecquerel
<OPTION VALUE=B25 > Kilobecquerel Per Kilogram
<OPTION VALUE=2P > Kilobyte
<OPTION VALUE=KB > Kilocharacter
<OPTION VALUE=B26 > Kilocoulomb
<OPTION VALUE=B27 > Kilocoulomb Per Cubic Metre
<OPTION VALUE=B28 > Kilocoulomb Per Square Metre
<OPTION VALUE=2R > Kilocurie
<OPTION VALUE=B29 > Kiloelectronvolt
<OPTION VALUE=78 > Kilogauss
<OPTION VALUE=KGM > Kilogram

L 3
<OPTION VALUE=WG > Wine Gallon
<OPTION VALUE=WM > Working Month
<OPTION VALUE=WR > Wrap
<OPTION VALUE=YRD > Yard
<OPTION VALUE=ANN > Years
</SELECT></TD><TD valign="top” align="left”><input value=""
name="XPostChange:/Quote/ListOfQuoteDetails/QuoteDetails[1]/QuotePricingD
etail/PricingDetail/Total Value/MonetaryValue/Monetary Amount”
type="“hidden”/><input
onChange="javascript:setModified ("X PostChange:/Quote/ListOfQuoteDetails/Quo
teDetails[1]/QuotePricingDetail/PricingDetail/Total Value/Monetary Value/Monetar
yAmount’);” maxlength="28" size="15" value=""
name="XPostContent:/Quote/ListOfQuoteDetails/QuoteDetails[1]/QuotePricingD
etail/PricingDetail/Total Value/MonetaryValue/Monetary Amount™ type="text”
class=“ElementStyle”/></TD></TR></TABLE></TD></TR><TR
class="ListRowAlternate”><TD class="StatusHeaderSmallNew”
align="left”>Attachment:</TD><TD colspan="“4" class="ListRowAlternateText”
align="right”><input value=""
name="XPostDefaultValue:/Quote/ListOfQuoteDetails/QuoteDetails[1]/Quoteltem
ListOfAttachment/ListOfAttachment/Attachment[1]/AttachmentLocation”
type="“hidden”/><input value=""
name="XPostAddInto:/Quote/ListOfQuoteDetails/QuoteDetails[1]”
type="“hidden”/><input
onClick="javascript:doXPostProcessWithDefault(‘CRSaveAction’,
‘XPostAddInto:’,*/Quote/ListOfQuoteDetails/QuoteDetails[1]’,
‘QuoteltemListOfAttachment’,
‘XPostDefaultValue:/Quote/ListOfQuoteDetails/QuoteDetails[1]/QuoteltemListOfA
ttachment/ListOfAttachment/Attachment[1]/AttachmentLocation’,
‘urn:attachmentl_1"); return false;” class="ElementStyle1”
name="AddAttachment” value="Add Attachment”
type="“submit”/></TD></TR><TR class="ListRowAlternate”><TD height="8"
colspan="5"><img width="1" height="8" alt=""
sre="../img/spacer.gif’/></TD></TR><TR bgcolor="“#000000"><TD height="1"
colspan="5"><img width="1" height="1" alt=""
sre="../img/spacer.gif”’/></TD></TR></TABLE><img xmlns:cbl="urn:x-
commerceone:document:com:commerceone: XCBL30:XCBL30.s0x$1.0”
xmlns:xm="http://www.commerceone.com/xcblmailbox”
xmlns:ext="http://www.commerceone.com/xmlpres” width="1" height="20" alt=""
sre="../img/spacer.gif”’/><BR xmlns:cbl="urn:x-

30

US 9,135,226 B2

31

-continued

32

commerceone:document:com:commerceone: X CBL30:XCBL30.s0x$1.0”
xmlns:xm="http://www.commerceone.com/xcblmailbox”

xmlns:ext="http://www.commerceone.com/xmlpres”/><TABLE xmlns:cbl="urn:x-

commerceone:document:com:commerceone: X CBL30:XCBL30.s0x$1.0”
xmlns:xm="http://www.commerceone.com/xcblmailbox”

xmins:ext="http://www.commerceone.com/xmlpres” width="100%" border="0"

cellspacing="0" cellpadding="0"><TR class="ListHeader”><TD

class="StatusHeaderNew1” align="left”>Quote Summary:</TD></TR></TABLE>

</Frame>

</td>

</tr>

</table>

<!-- END MAIN document area -->
</FORM>

<!-- END FORM -->

<!-- END MAIN content cell -->

</TD></TR></TBODY>
</TABLE>
</BODY>
</HTML>
e end Mailbox20.jsp --------------=--m-- - >

FIG. 13 is a sample user interface screen. This screen
corresponds to the HTML code above. Alternative embodi-
ments may use a display language other than HTML or may
use smart terminals or thin clients instead of being specifi-
cally adapted to browsers. In FIG. 13, a number of user
controls are provided. A send control 1301 allows a user to
send a completed document. Preferably, the document is vali-
dated prior to the send control being functional. A save as
draft control 1302 allows the user to save the document with-
out sending it or validating it. A validate control 1303 allows
the user to invoke one or more levels of validation. Data entry
validation may be supported for editable fields without invok-
ing this validate control. For instance, numeric data may be
required in the unit price field 1328 and the total price field
1331, even without invoking the validate control 1303. Con-
trols for adding and removing line items 1304 are appropriate
to a quote, request for quote or similar electronic commerce
document. These controls may either invoke a procedure
running within a browser, such as a JavaScript procedure, or
may cause a client to contact a server for an updated screen.
An add attachment control 1305 allows the user to add an
attachment, which then is listed under attachments 1332. In
this example, the fields of'a quote can be grouped. The status
of'this example is draft 1311. A reply to designee is identified
1312. The document type is a quote 1313. The quote header
1314 in this example includes a sequence number, which may
be automatically generated by either the client or server, and
a date field which may be automatically populated or manu-
ally entered. The issuer and recipient data 1315 is generated
by a transformation of a request for quotation. The quote
detail 1321 includes several fields of various types. A status
field populated from a pull down menu as provided 1322. An
item number 1323 is given a starting value, which may be
editable. Additional fields 1324-1327 copy into the quotation
information from the request for quotation. The user com-
pletes the unit price 1328. A unit of measure is selected from
a pull down menu 1329. This field could be given a starting
value to match the request for quotation. A total price field
1331 can be completed by the user or automatically calcu-
lated as an extension of the quantity and unit price. A quote
summary field 1333 can be generated automatically or filled
in by a user. Not visible in the sample screen, but included in
the HTML code above are path specifications corresponding
to fields of data that appear on the screen. Path specifications
may be provided for all fields or only for editable fields. Also

25

30

35

40

45

50

55

60

65

not visible are update status fields. The HTML code above
provides a hidden update status field for at least the editable
fields. This optional update status field can be used by either
the client or the server to process and update more efficiently.
The client can use an update status field to limit the informa-
tion communicated to the server, in some embodiments. The
server can use the update status field to avoid changing values
already resident in memory, in some embodiments.

FIG. 14 is a sequence diagram for communications among
components such as those depicted in the alternative embodi-
ments of FIGS. 6, 7 and 11. The browser 1401 is the compo-
nent with which the user interacts. It may be a web browser,
a thin client, a smart terminal or other equivalent hardware
and software interface. The servlet 1402 runs on the server.
Therule selector 1403 is a component for choosing the appro-
priate rules, forms etc. The transformation component applies
a declarative transformation to a self-describing, structure
document. For instance, an XSL style sheet can be applied to
an XML document to generate a new XML document. Or, a
JSP page or XSLT style sheet can be applied to an XML
document to generate an HTML page for display. A variety of
declarative transformations can be used. A database 1405
manages persistent storage. An XML engine 1406 manipu-
lates an XML document in memory.

The sequence in FIG. 14 begins at the browser 1401, with
a user viewing a request for quotation document 1411. The
user requests generation of a reply document 1412. The serv-
let initiates mapping the document to a set of potential replies
1413. The servlet may receive from the browser a starting
document type or it may receive a document ID for a self-
describing, structured document and learn the document type
from accessing the document. From a starting document type,
the rule selector is invoked 1414 to determine the available
reply types. The transformation engine generates an interface
screen 1415, which the servlet returns to the browser 1416.
The user selects a reply type, for instance a quote 1417. The
servlet transforms the starting document, in this example a
request for quotation, into a draft resulting document 1418, in
this case a quote. In no particular order, a style sheet is
retrieved 1419 and applied to the quote to generate a user
interface screen (implied), the quote is persisted by the data-
base 1421 and, in some embodiments, the quote is loaded into
an internal data structure for ease of manipulation 1421. This
data structure may be a DOM tree. Once data for the user
interface has been generated, it can be transmitted by the

US 9,135,226 B2

33

servlet to the browser 1422. The user updates fields and sends
all or part of the data received from the servlet back 1423. The
servlet may either have the draft quote in memory, it may
retrieve the draft quote from the database 1424 and create a
data structure in memory 1425 to be updated 1426, or it may
create a quote from the data received back from the browser.
Inthe embodiment illustrated here, the draft quote is retrieved
from a database and updated 1426 with the fields that have
been flagged as modified by the user. The updated data struc-
ture in memory is used to generate a self-describing, struc-
tured document 1427, which is persisted to the database 1428.
Once updating has been accomplished, the update is commu-
nicated to the browser 1429. Not shown in this sequence are
the validation steps previously discussed.

FIG. 15 depicts an action command framework. In this
framework, the servlet translates actions into one or more
commands. This facilitates modification of process flow and
reuse of sub process steps. A number of software components
1501-1507 are used to implement this framework. The
sequence diagram depicts initialization of the object factory
1511. A request container is created 1512. The requested
action from a user is created using the initialized object fac-
tory and request container 1513. The object factory acts to
create the requested action 1514, consistent with appropriate
selection of parameters, forms, etc. The servlet directs execu-
tion ofthe action 1515. A set of commands are created to carry
outthe action 1516. The object factory creates the appropriate
commands 1517. The commands are executed 1518, and an
appropriate JSP page accessed 1519.

FIG. 16 depicts interaction among the servlet, the XPost
interpreter and the XML engine when receiving a request
from the client. A set of software components 1601-1616 are
provided. Prior to the sequence illustrated in this figure, the
servlet 1601 receives data including sets of update operators,
path specifications and update values. In one embodiment, the
servlet receives this data from a client browser via an HTTP
post command in an HTML format. The servlet passes the
data 1611 to an iterator 1602. The iterator builds a dictionary,
table or other data structure in a form that the interpreter
expects 1612. The servlet 1601 invokes 1613 interpreter 1603
to process the data structure. The interpreter exchanges mes-
sages 1614, 1615 with access control to determine the secu-
rity status of the requestor. Assuming that the security check
passes, the interpreter instantiates 1616 the resources needed
to process the data. Fields received from the user are
unmasked 1617 from a user-friendly format to a canonical
format used for internal processing. This un-masking is
repeated as often as required 1618. With data in a canonical
format, the XML engine 1605 is invoked 1619 to update a
document consistent with the data structure. The updated
document is returned 1620, 1621. Some of the components
involved in the sequence are depicted in the block diagram of
FIG.17. Updated HTML 1701 is posted via HTTP to the Web
server 1702. The XPost interpreter 1703 acts upon XPost
commands which may be stored in a hash table, dictionary or
other data structure 1704. The XPost interpreter 1703 con-
trols updating of an XML instance 1712 in a database 1711,
which manages persistent storage.

FIG. 18 is a simplified flow chart for a method of updating
a self-describing, structured document. The character string
1801 is received. The character string may be encoded
according to any of a variety of standards, such as UTF-8. The
character string includes an update operator or other indica-
tion of the desired operation, a path specification identifying
a node or location within a self-describing, structured docu-
ment, at which the update operator is to be applied, and one or
more update values. One update operator may apply to a

35

40

45

55

34

plurality of path specifications and update values. Alterna-
tively, the update operator may be received as part of the URL
that invokes processing or it may be implied by the manner in
which the update component is invoked. Update operators
may include deleting an element, adding an element before an
identified node as a sibling of the node, adding an element
after the identified node is a sibling of the node, adding the
element as a child of the identified node, or a combination of
delete and add to accomplish a move or a replace. Other
update operators can be supported. The past specification
may be compliant with XPath or a subset of XPath. It is
preferred to fully specity the path in absolute, instead of
relative terms. Reference to identifying a node in the self-
describing, structured document is not meant to imply that the
document needs to be manipulated using the document object
model or any other tree structured tool. The document can
readily be manipulated with SAX-compliant tools or other
event-driven tools. The character string is parsed 1802. A
self-describing, structured document is accessed 1803. The
document has a document type, which may be received or
may be obtained from the document itself. The document
may be accessed from disk 1811 or may already be resident in
memory when the character string is received. XML docu-
ments are among those that can be considered self-describing,
structured documents. A schema corresponding to the docu-
ment type of the document is accessed 1804. The schema may
be accessed from a database 1812, disk or memory. The
schema is used for validating 1804 application of the update
operator and update values at the node identified in the past
specification. The schema may be SOX-compliant, XML
schema-compliant, or RELAX-compliant. Other schemas
may apply to XML or non-XML documents. Following suc-
cessful validation, the document is updated 1805 with update
values at the node specified in the past specification. In some
embodiments, the character string will include a document ID
or a binary document ID will be sent in addition to a character
string. In other implementations, the document ID will be
implied by prior state information, in which case the docu-
ment may already be in memory. All or part of the document
may be accessed via a data-object-model data structure in
memory. Any of the embodiments may be used with the past
specification that is compliant with any version of an XPath
standard. Similarly, any of the embodiments may be used
with a schema that is compliant with any version of a Sox
standard. In some embodiments, an element set will be con-
structed, such as a set of fields for a line item in a purchase
order. A set of elements associated with a single location or
node may be assigned a shorthand or alias and accessed or
specified using the shorthand or alias. When an alias is used
for a set of elements, more than one update value may be
associated with a single path specification. In addition to
validation against the schema, this process may further
involve validation against a business processing rule set. The
business processing rules may be selected according to the
document type, trading partner, or other criteria. The business
processing rules may be implemented by a set of Schematron
declarations or may be implemented in procedural logic.
FIG. 19 illustrates a protocol for updating a self-describ-
ing, structured document corresponding to one of a plurality
of document schemas. The entities represented in this dia-
gram are a requestor 1901, a respondent 1902 and a source of
declarative transformations 1903. The protocol begins with
receiving of request 1911 identifying a starting document and
specifying a document type to be generated from the starting
document. The identification of the starting document and the
specification of the document type may be received in two
separate messages, so that the starting document is known

US 9,135,226 B2

35

from prior state information when the type of document is
specified. The respondent, which may be a servlet running on
a server, accesses one or more declarative transformations
1912, 1913 corresponding to the starting document and the
specified document type. A rule selector may determine
which declarative transformations are accessed. The system
applies the declarative transformations to the starting docu-
ment 1914, producing a plurality of path specifications for
fields corresponding to the specified document type, starting
values based on the starting document for at least some of the
fields in some applications, fields to be completed by the user.
The application of declarative transformations may produce a
draft resulting document, a form, or both. In one embodiment,
the system sends a form responsive to the request 1915 to the
user, receives an updated form 1916, validates the update
information 1917 and generates a final resulting document
1919. Validating the update information may involve one or
more types of validation, such as validation against the
schema and validation against business processing rules.

FIG. 20 is a flowchart overview of validation. A document
2001 is received 2002. Optionally, a set of declarative rules
2011 for validation is accessed 2003. The declarative rules
may include schema level validation based on a Sox schema
and business logic level validation using Schematron. If vali-
dation fails on the schema level, field validation errors may be
displayed without proceeding to Schematron validation. Vali-
dation errors may be displayed adjacent to the node at which
the error was detected. If validation fails on the Schematron
level, error messages may be displayed at the top of the user
interface or wherever appropriate, using the XSLT docu-
ment () function. The default.xsl sample code set forth above
includes logic for processing both Schematron and field vali-
dation errors.

One or more errors in the primary document are detected
2004. A secondary self-describing, structured document
2012 including the detected errors is generated. For the
detected errors, an error identifier and a path specification
identifying a node within the primary document correspond-
ing to one or more of the detected errors are generated. The
primary 2001 and secondary 2012 documents are merged
2005 for display 2006. In one embodiment, the secondary
document is an XML document. An enhanced version of the
XSLT document () function is used to allow retrieval of the
secondary document containing error text. The XML Pres
component, which implements the XSTT functionality, is an
enhanced version of Apache Foundation’s Xalan. This com-
ponent takes into account various concepts such as name
spaces in Sox documents and polymorphism. Extension of
the document () function enables the loading of an external
document to be specified by the invoker.

FIG. 21 is a flowchart overview of a method of searching a
plurality of self-describing structure documents, the docu-
ments including document fields. A server 2101 provides a
user Interface 2102. The user interface includes, in one or
more screens, the document type selection filter and one or
more document fields selection filters. These document field
selection filters are context sensitive to the selected type of
document, if a document type is selected. One or more value
specification fields are supplied, to be filled in for the field
selection filters. These value specification fields are context
sensitive, so that field format errors, such as text characters in
a numeric field, can be detected directly at the user interface,
without return to the server. In addition, has non displaying
fields, one or more path specifications corresponding to the
document fields and the value specification fields are pro-
vided. The path specifications identifying nodes to be tested
against the completed value specifications for a search. The

25

40

45

50

55

36

server next receives data specifying a search 2104. This data
typically comes from a user responding to the user interface.
It includes the selected document type, completed value
specifications and path specifications for the selected fields.
Alternatively, aliases may be given for selected fields, which
are expanded into path specifications by reference to a data
structure 2103. A search is conducted through a subset of
self-describing, structured documents 2105, based on the
completed value specifications and the corresponding path
specifications. The subset includes documents of the selected
document type. From the perspective of the user, the user
interface displays a document type selection filter, one or
more document field selection filters, which are context sen-
sitive to a selected document type and one or more value
specification fields, which are context sensitive to the docu-
ment fields. Not displayed to the user, except perhaps a
debugging mode, are path specifications corresponding to the
document fields and the value specification fields. The path
specifications identify nodes to be tested against completed
value specifications when a search is conducted. The user
selects a document type and one or more document fields
appropriate to the document type. Value specifications are
completed by the user. The user’s selections are transmitted to
a server which may then conduct a search. Recast as a device,
the computer user interface includes a document type selec-
tion filter, one or more document field selection filters
coupled by context to a selected document type, one or more
value specification fields, coupled by context to selected
document fields, and, has non displaying fields, one or more
path specifications corresponding to the document fields and
to the value specification fields.

A context-based search facility is user configurable. Data-
base configuration interfaces may be used for specifying
those fields to be indexed. The user interface can be config-
ured to provide user-friendly names to be displayed corre-
sponding to XPath or field element name representations.
Configuring the user interface permits fields that have difter-
ent names in different document types to begin a common,
user-friendly name at the user interface. FIG. 22 identifies
components of context-based searching. Upon receiving a
new document 2211, the generic document handling service
2212 will scan its configurations 2201 to determine if 2213
the document has been configured for content-based search-
ing. If the document type is configured to be searched, the
system identifies fields to be indexed. In one embodiment, it
uses the XPath specification of the incoming document fields
to locate the indexable fields. After indexing, a process is
invoked to persist the data 2221. Persistent indexed data is
stored 2222. Further processing proceeds. Database configu-
ration is supported by various tables.

FIG. 23 depicts a document type list used for database
search configuration. A list, table or other data structure may
be used to capture all document types recognized by the
generic document handling system, or atleast by the indexing
system. The type ID column 2301 contains an integer value
for an automatically generated field ID. This unique field ID
is used as a shorthand for the document type. The type column
2302 is the character string identifying the document type.
For instance, “request for quotation” is a document type. The
name space column 2303 identifies the name space to which
this document type belongs. The name space may be a uni-
form resource name that fully qualifies a location at which a
schema for the document can be found. Column 2304 is an
extra column reserved for future use. The application-created
column 2305 is an integer used to flag fields in which data is
entered manually. This field should be left null if data is
entered manually.

US 9,135,226 B2

37

FIG. 24 A-B depicts a field definition table that is populated
with path specifications of elements that will be searched. The
field definition column 2401 is an automatically generated
integer value, that is used as a shorthand for the field. The
MPID column 2402 is a unique identifier for a particular
trading partner for whom the past specification that follows is
valid. The type ID column 2403 is an integer value mapped to
the document’s type ID 2301. Many fields can be mapped to
a single document type. The name field 2404 is a path speci-
fication. In some embodiments, it is an XPath for an XML
document.

XPath provides a unique way to identify a field inside a
XML document, but it may not be meaningful to an end user.
As illustrated in FIG. 25, an alias to the XPath may be used as
an alternative to embedding the full XPath string with each
field used in the interface. The alias may be displayed in the
user interface as a field name. The generic document handling
system will associate the alias with the full XPath string when
user submits a request. The segment 2501 is an example of
XPath and alias, segment 2502 is another example of multiple
occurrence XPath and alias, segment 2503 is another example
of different name space XPath and alias.

FIG. 26A-B is a table of searchable data extracted for
indexing. The searchable field column 2601 identifies the
field in which the data occurs. The document sequence field
2602 corresponds to the document in which the field was
found. The field definition column 2603 corresponds to the
field definition IDs in FIG. 24A-B. The value column 2604
contains a searchable value. This value may be a single token
or it may be the full contents of the field. A single token may,
in some embodiments, include embedded blanks or other
non-text characters.

While the preceding examples are cast in primarily in terms
of'a method, devices and systems employing this method are
easily understood. An electronically readable medium, such
as a DVD, CD, memory module, magnetic disk or magnetic
tape containing a program capable of practicing aspects the
claimed method is one such device. A computer system com-
prising one or more servers and/or workstations having
memory loaded with a program practicing the claimed
method is another such device.

While the present invention is disclosed by reference to the
preferred embodiments and examples detailed above, it is
understood that these examples are intended in an illustrative
rather than in a limiting sense. It is contemplated that modi-
fications and combinations will readily occur to those skilled
in the art, which modifications and combinations will be
within the spirit of the invention and the scope of the follow-
ing claims.

We claim as follows:
1. A method of preparing a response to a selected XML
document, the method including:

transmitting to a server a selection of an XML document,
wherein the selected XML document has a selected
incoming document type;

receiving and causing display of a list of available reply
document types to select and generate in draft, respon-
sive to the selected incoming document type;

transmitting to the server a selection of a selected reply
document type;

applying a first style sheet to generate the selected draft
reply document and building an in-memory tree-based
representation of the selected draft reply document;

applying a second style sheet to generate an interface that
supports editing of the in-memory draft reply document;

5

10

15

20

25

30

35

40

45

55

60

38
accepting edits, updating the in-memory draft reply docu-
ment, marshalling it into XML format, and either per-
sisting it for later use or sending it as a reply to the XML
document.
2. The method of claim 1, further including identifying the
first and second style sheets using the document type and the
selected draft reply document.
3. The method of claim 1, wherein the second style sheet
uses hidden fields to identify tree nodes of the in-memory
draft reply document to which edits are applied.
4. The method of claim 1, wherein the second style sheet
uses hidden fields to identify field names of the draft reply
document to which edits are applied.
5. The method of claim 1, further including:
error checking the draft reply document and generating an
error report of any errors detected either as an
in-memory tree-based representation of the errors
detected or an XML error report document; and

applying a third style sheet to merge the draft reply docu-
ment and the error report and generate an interface that
juxtaposes the error messages with parts of the draft
reply document containing errors.

6. The method of claim 5, further including:

applying the third style sheet further includes generating an

interface that supports editing of the in-memory draft
reply document; and

accepting edits, updating the in-memory draft reply docu-

ment, marshalling it into XML format, and either per-
sisting it for later use or sending it as a reply to the XML
document.

7. A method of editing draft XML documents, the method
including:

receiving a draft XML document, wherein the draft XML

document has a document type;

receiving and causing display of an interface that supports

editing of an in-memory tree-based representation ofthe
draft XML document, wherein the interface has been
generated by applying a first style sheet to the
in-memory draft document;

accepting and transmitting to a server edits to update the

in-memory draft XML document;
error checking the updated draft XML document and gen-
erating an error report of any errors detected either as an
in-memory tree-based representation of the errors
detected or an XML error report document; and

applying a second style sheet to merge the updated draft
document and the error report and generate an interface
that juxtaposes the error messages with parts of the draft
document containing errors.

8. The method of claim 7, further including identifying the
first style sheet using the document type of the draft XML
document.

9. The method of claim 7, further including further select-
ing the first style sheet from among a hierarchy of generic and
customized style sheets using a rule selector keyed to the
document type and the receiver identity.

10. The method of claim 7, wherein the first style sheet uses
hidden fields to identify tree nodes of the in-memory draft
XML document to which edits are applied.

11. The method of claim 7, wherein the first style sheet uses
hidden fields to identify field names of the draft XML docu-
ment to which edits are applied.

12. The method of claim 7, further including:

applying the second style sheet further includes generating

an interface that supports editing of the in-memory draft
XML document; and

US 9,135,226 B2

39

accepting edits, updating the in-memory draft document,
marshalling it into XML format, and either persisting it
for later use or sending it as a reply to the XML docu-
ment.

13. A method of drafting XML documents, the method
including:

receiving a specification of a document type for an XML

document to draft;

receiving and causing display of an interface that supports

editing of an in-memory tree-based representation of the
XML document to draft, wherein the interface has been
generated by applying a first style sheet to the
in-memory XML document to draft; and

accepting and transmitting to the server edits to update the

in-memory XML document to draft;

error checking the updated XML, document to draft and

generating an error report of any errors detected either as
an in-memory tree-based representation of the errors
detected or an XML error report document; and

applying a second style sheet to merge the updated XML

document to draft and the error report and generate an
interface that juxtaposes the error messages with parts of
the XML document to draft containing errors.

14. The method of claim 13, further including identifying
the first style sheet using the document type of the XML
document to draft.

15. The method of claim 13, wherein the first style sheet
uses hidden fields to identify tree nodes of the in-memory
XML document to draft to which edits are applied.

16. The method of claim 13, wherein the first style sheet
uses hidden fields to identify field names of the XML docu-
ment to draft to which edits are applied.

5

20

30

40

17. A system for composing and editing generic XML

documents, the system including:

at least first and second processors coupled in communi-
cation;

a schema repository of schemas for XML documents of
various document types couple in communication with
at least one of the processors;

a style sheet repository of style sheets applicable to the
document types adapted to generate an interface that
supports editing of the in-memory draft document, the
style sheet repository coupled in communication with at
least one of the processors;

a user interaction module running on a first processor that
receives a request from a user to compose or edit an
XML document of a particular document type;

a document tree module that builds an in-memory tree-
based representation of the selected XML document,
responsive to the user interaction module and compliant
with a schema from the schema repository; and

a transformation module coupled to the user interaction
model that selects a style sheet from the style sheet
repository, responsive to the request and to the document
type requested, and applies the style sheet to the in-
memory XML document, to generate an editing inter-
face that supports editing of the in-memory XML docu-
ment;

wherein the user interaction module is further adapted to
cause display of the editing interface to the user and to
accept edits from the user;

wherein the document tree module is further adapted to
update the in-memory XML document, marshal itinto a
generalized XML format, and persist it for later use.

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 9,135,226 B2 Page 1 of 1
APPLICATION NO. : 13/460399

DATED : September 15, 2015

INVENTOR(S) : Muljadi Sulistio et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title Page, item (73), Assignee should read: Open Invention Network, LLC, Durham, NC (US)

Signed and Sealed this
Twenty-fifth Day of October, 2016

Dhecbatle K Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office

